Suppr超能文献

兆赫兹级光学相干断层扫描血管造影术可改善人体视网膜成像中脉络膜毛细血管和脉络膜的对比度。

Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging.

作者信息

Migacz Justin V, Gorczynska Iwona, Azimipour Mehdi, Jonnal Ravi, Zawadzki Robert J, Werner John S

机构信息

Vison Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA 95817, USA.

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland.

出版信息

Biomed Opt Express. 2018 Dec 5;10(1):50-65. doi: 10.1364/BOE.10.000050. eCollection 2019 Jan 1.

Abstract

Angiographic imaging of the human eye with optical coherence tomography (OCT) is becoming an increasingly important tool in the scientific investigation and clinical management of several blinding diseases, including age-related macular degeneration and diabetic retinopathy. We have observed that OCT angiography (OCTA) of the human choriocapillaris and choroid with a 1.64 MHz A-scan rate swept-source laser yields higher contrast images as compared to a slower rate system operating at 100 kHz. This result is unexpected because signal sensitivity is reduced when acquisition rates are increased, and the incident illumination power is kept constant. The contrast of angiography images generated by acquiring multiple sequential frames and calculating the variation caused by blood flow, however, appears to be improved significantly when lower-contrast images are taken more rapidly. To demonstrate that the acquisition rate plays a role in the quality improvement, we have imaged five healthy subjects with a narrow field of view (1.2 mm) OCTA imaging system using two separate swept-source lasers of different A-line rates and compared the results quantitatively using the radially-averaged power spectrum. The average improvement in the contrast is 23.0% (+/-7.6%). Although the underlying cause of this enhancement is not explicitly determined here, we speculate that the higher-speed system suppresses the noise contribution from eye motion in subjects and operates with an inter-scan time that better discriminates the flow velocities present in the choroid and choriocapillaris. Our result informs OCT system developers on the merits of ultrahigh-speed acquisition in functional imaging applications.

摘要

利用光学相干断层扫描(OCT)对人眼进行血管造影成像,正日益成为包括年龄相关性黄斑变性和糖尿病视网膜病变在内的几种致盲疾病科学研究和临床管理中的重要工具。我们观察到,与以100kHz运行的较慢速率系统相比,采用1.64MHz A扫描速率扫频源激光对人脉络膜毛细血管和脉络膜进行OCT血管造影(OCTA)可产生对比度更高的图像。这一结果出乎意料,因为在入射照明功率保持恒定的情况下,采集速率增加时信号灵敏度会降低。然而,通过采集多个连续帧并计算由血流引起的变化而生成的血管造影图像的对比度,在更快地拍摄低对比度图像时似乎会显著提高。为了证明采集速率在质量改善中发挥作用,我们使用具有不同A线速率的两个单独扫频源激光,通过窄视野(1.2mm)OCTA成像系统对五名健康受试者进行成像,并使用径向平均功率谱对结果进行定量比较。对比度的平均提高为23.0%(±7.6%)。尽管此处未明确确定这种增强的根本原因,但我们推测,高速系统抑制了受试者眼睛运动产生的噪声贡献,并且以更好地区分脉络膜和脉络膜毛细血管中血流速度的扫描间隔时间运行。我们的结果为OCT系统开发者提供了关于功能成像应用中超高速采集优点的信息。

相似文献

1
Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging.
Biomed Opt Express. 2018 Dec 5;10(1):50-65. doi: 10.1364/BOE.10.000050. eCollection 2019 Jan 1.
5
Image artefacts in swept-source optical coherence tomography angiography.
Br J Ophthalmol. 2017 May;101(5):564-568. doi: 10.1136/bjophthalmol-2016-309104. Epub 2016 Jul 20.
6
Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen.
Graefes Arch Clin Exp Ophthalmol. 2017 Dec;255(12):2347-2355. doi: 10.1007/s00417-017-3813-8. Epub 2017 Oct 5.
7
The application of optical coherence tomography angiography in retinal diseases.
Surv Ophthalmol. 2017 Nov-Dec;62(6):838-866. doi: 10.1016/j.survophthal.2017.05.006. Epub 2017 Jun 1.
9
Choriocapillaris Imaging Using Multiple En Face Optical Coherence Tomography Angiography Image Averaging.
JAMA Ophthalmol. 2017 Nov 1;135(11):1197-1204. doi: 10.1001/jamaophthalmol.2017.3904.

引用本文的文献

1
Wide-field choriocapillaris mapping with 3.4 MHz adaptive optics-optical coherence tomography angiography.
Biomed Opt Express. 2025 Jul 17;16(8):3255-3269. doi: 10.1364/BOE.550936. eCollection 2025 Aug 1.
2
Scan speed affects quantitative optical coherence tomography angiography vascular metrics.
Sci Rep. 2024 Nov 22;14(1):28997. doi: 10.1038/s41598-024-80562-4.
3
Microscope integrated MHz optical coherence tomography system for neurosurgery: development and clinical in-vivo imaging.
Biomed Opt Express. 2024 Sep 23;15(10):5960-5979. doi: 10.1364/BOE.530976. eCollection 2024 Oct 1.
5
Retinal imaging using adaptive optics optical coherence tomography with fast and accurate real-time tracking.
Biomed Opt Express. 2022 Oct 18;13(11):5909-5925. doi: 10.1364/BOE.467634. eCollection 2022 Nov 1.
6
Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina.
Biomed Opt Express. 2022 Oct 17;13(11):5860-5878. doi: 10.1364/BOE.462594. eCollection 2022 Nov 1.
7
Visualization of erythrocyte stasis in the living human eye in health and disease.
iScience. 2022 Dec 7;26(1):105755. doi: 10.1016/j.isci.2022.105755. eCollection 2023 Jan 20.
8
Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns.
Biomed Opt Express. 2022 Sep 9;13(10):5212-5230. doi: 10.1364/BOE.467563. eCollection 2022 Oct 1.
9
Spatio-temporal optical coherence tomography provides full thickness imaging of the chorioretinal complex.
iScience. 2022 Nov 5;25(12):105513. doi: 10.1016/j.isci.2022.105513. eCollection 2022 Dec 22.

本文引用的文献

2
Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited].
Biomed Opt Express. 2017 Jun 15;8(7):3248-3280. doi: 10.1364/BOE.8.003248. eCollection 2017 Jul 1.
3
Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited].
Biomed Opt Express. 2017 Feb 24;8(3):1803-1822. doi: 10.1364/BOE.8.001803. eCollection 2017 Mar 1.
4
Optical coherence tomography based angiography [Invited].
Biomed Opt Express. 2017 Jan 24;8(2):1056-1082. doi: 10.1364/BOE.8.001056. eCollection 2017 Feb 1.
6
Calibration of optical coherence tomography angiography with a microfluidic chip.
J Biomed Opt. 2016 Aug 1;21(8):86015. doi: 10.1117/1.JBO.21.8.086015.
7
Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels.
Biomed Opt Express. 2016 Jun 20;7(7):2709-28. doi: 10.1364/BOE.7.002709. eCollection 2016 Jul 1.
8
Optical Coherence Tomography Angiography.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT27-36. doi: 10.1167/iovs.15-19043.
9
The Development, Commercialization, and Impact of Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT1-OCT13. doi: 10.1167/iovs.16-19963.
10
Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid.
Biomed Opt Express. 2016 Feb 19;7(3):911-42. doi: 10.1364/BOE.7.000911. eCollection 2016 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验