a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032.
c MilliporeSigma, Seattle, Washington, 98119.
Radiat Res. 2019 Apr;191(4):342-351. doi: 10.1667/RR15243.1. Epub 2019 Feb 19.
The cytokinesis-block micronucleus (CBMN) assay has become a fully-validated and standardized method for radiation biodosimetry. The assay is typically performed using microscopy, which is labor intensive, time consuming and impractical after a large-scale radiological/nuclear event. Imaging flow cytometry (IFC), which combines the statistical power of traditional flow cytometry with the sensitivity and specificity of microscopy, has been recently used to perform the CBMN assay. Since this technology is capable of automated sample acquisition and multi-file analysis, we have integrated IFC into our Rapid Automated Biodosimetry Technology (RABiT-II). Assay development and optimization studies were designed to increase the yield of binucleated cells (BNCs), and improve data acquisition and analysis templates to increase the speed and accuracy of image analysis. Human peripheral blood samples were exposed ex vivo with up to 4 Gy of c rays at a dose rate of 0.73 Gy/min. After irradiation, samples were transferred to microtubes (total volume of 1 ml including blood and media) and organized into a standard 8 × 12 plate format. Sample processing methods were modified by increasing the blood-to-media ratio, adding hypotonic solution prior to cell fixation and optimizing nuclear DRAQ5 staining, leading to an increase of 81% in BNC yield. Modification of the imaging processing algorithms within IFC software also improved BNC and MN identification, and reduced the average time of image analysis by 78%. Finally, 50 ll of irradiated whole blood was cultured with 200 ll of media in 96-well plates. All sample processing steps were performed automatically using the RABiT-II cell: :explorer robotic system adopting the optimized IFC-CBMN assay protocol. The results presented here detail a novel, high-throughput RABiT-IFC CBMN assay that possesses the potential to increase capacity for triage biodosimetry during a large-scale radiological/nuclear event.
有丝分裂阻断微核 (CBMN) 分析已成为一种经过充分验证和标准化的辐射生物剂量测定方法。该分析通常使用显微镜进行,这是一项劳动密集型、耗时且不切实际的工作,特别是在发生大规模放射性/核事件后。成像流式细胞术 (IFC) 结合了传统流式细胞术的统计能力和显微镜的灵敏度和特异性,最近已用于进行 CBMN 分析。由于这项技术能够自动采集样本和进行多文件分析,因此我们已将 IFC 集成到我们的快速自动生物剂量测定技术 (RABiT-II) 中。为了提高双核细胞 (BNC) 的产量,同时提高数据采集和分析模板的速度和准确性,我们设计了分析方法的开发和优化研究。将人类外周血样本在 0.73 Gy/min 的剂量率下离体暴露于高达 4 Gy 的 c 射线。照射后,将样本转移到微管中(包括血液和培养基的总体积为 1ml),并组织成标准的 8×12 板格式。通过增加血液与培养基的比例、在细胞固定前添加低渗溶液以及优化核 DRAQ5 染色,对样本处理方法进行了修改,从而使 BNC 的产量增加了 81%。IFC 软件中的成像处理算法的修改也改善了 BNC 和 MN 的识别,并将图像分析的平均时间缩短了 78%。最后,用 200μl 培养基在 96 孔板中培养 50μl 照射全血。采用优化的 IFC-CBMN 分析方案,使用 RABiT-II 细胞::explorer 机器人系统自动执行所有样本处理步骤。这里介绍的结果详细说明了一种新型高通量 RABiT-IFC CBMN 分析方法,该方法有可能在大规模放射性/核事件中增加大规模生物剂量测定的分类能力。