Suppr超能文献

一种用于脉冲神经网络的粗粒度框架:在同质性与同步性之间

A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.

作者信息

Zhang Jiwei, Zhou Douglas, Cai David, Rangan Aaditya V

机构信息

Courant Institute of Mathematical Sciences, New York University, New York, USA.

出版信息

J Comput Neurosci. 2014 Aug;37(1):81-104. doi: 10.1007/s10827-013-0488-y. Epub 2013 Dec 13.

Abstract

Homogeneously structured networks of neurons driven by noise can exhibit a broad range of dynamic behavior. This dynamic behavior can range from homogeneity to synchrony, and often incorporates brief spurts of collaborative activity which we call multiple-firing-events (MFEs). These multiple-firing-events depend on neither structured architecture nor structured input, and are an emergent property of the system. Although these MFEs likely play a major role in the neuronal avalanches observed in culture and in vivo, the mechanisms underlying these MFEs cannot easily be captured using current population-dynamics models. In this work we introduce a coarse-grained framework which illustrates certain dynamics responsible for the generation of MFEs. By using a new kind of ensemble-average, this coarse-grained framework can not only address the nucleation of MFEs, but can also faithfully capture a broad range of dynamic regimes ranging from homogeneity to synchrony.

摘要

由噪声驱动的结构均匀的神经元网络可以展现出广泛的动态行为。这种动态行为的范围可以从均匀性到同步性,并且常常包含我们称为多重放电事件(MFEs)的短暂协同活动爆发。这些多重放电事件既不依赖于结构化架构,也不依赖于结构化输入,而是系统的一种涌现特性。尽管这些多重放电事件可能在体外培养和体内观察到的神经元雪崩中起主要作用,但使用当前的群体动力学模型很难捕捉到这些多重放电事件背后的机制。在这项工作中,我们引入了一个粗粒度框架,该框架阐明了负责多重放电事件产生的某些动力学。通过使用一种新型的系综平均,这个粗粒度框架不仅可以解决多重放电事件的成核问题,还可以忠实地捕捉从均匀性到同步性的广泛动态范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验