MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine , University of Oxford, John Radcliffe Hospital , Oxford OX3 9DS , U.K.
Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K.
ACS Appl Mater Interfaces. 2019 Mar 20;11(11):10481-10491. doi: 10.1021/acsami.8b21398. Epub 2019 Mar 6.
Cellular membranes are, in general, impermeable to macromolecules (herein referred to as macrodrugs, e.g., recombinant protein, expression plasmids, or mRNA), which is a major barrier for clinical translation of macrodrug-based therapies. Encapsulation of macromolecules in lipid nanoparticles (LNPs) can protect the therapeutic agent during transport through the body and facilitate the intracellular delivery via a fusion-based pathway. Furthermore, designing LNPs responsive to stimuli can make their delivery more localized, thus limiting the side effects. However, the principles and criteria for designing such nanoparticles remain unclear. We show that the thermodynamic state of the lipid membrane of the nanoparticle is a key design principle for acoustically responsive fusogenic nanoparticles. We have optimized a cationic LNP (designated LNP) with two different phase transitions near physiological conditions for delivering mRNA. A bicistronic mRNA encoding a single domain intracellular antibody fragment and green fluorescent protein (GFP) was introduced into a range of human cancer cell types using LNP, and the protein expression was measured via fluorescence corresponding to the GFP expression. The LNP/mRNA complex demonstrated low toxicity and high delivery, which was significantly enhanced when the transfection occurred in the presence of acoustic shock waves. The results suggest that the thermodynamic state of LNPs provides an important criterion for stimulus responsive fusogenic nanoparticles to deliver macrodrugs to the inside of cells.
细胞膜通常对大分子(本文中称为大药物,例如重组蛋白、表达质粒或 mRNA)是不可渗透的,这是大分子药物治疗临床转化的主要障碍。将大分子包裹在脂质纳米粒(LNPs)中可以在通过身体运输期间保护治疗剂,并通过融合途径促进细胞内递药。此外,设计对刺激有响应的 LNPs 可以使它们的递药更具局部性,从而限制副作用。然而,设计此类纳米颗粒的原理和标准仍不清楚。我们表明,纳米颗粒脂质膜的热力学状态是声响应融合纳米颗粒的关键设计原则。我们已经优化了一种带有两个不同相转变的阳离子 LNPs(命名为 LNP),以在接近生理条件下递送 mRNA。使用 LNP 将编码单个域细胞内抗体片段和绿色荧光蛋白(GFP)的双顺反子 mRNA 引入一系列人类癌细胞类型中,并通过与 GFP 表达相对应的荧光测量蛋白质表达。LNP/mRNA 复合物表现出低毒性和高递药效率,当转染在声震波存在下发生时,递药效率显著提高。结果表明,LNPs 的热力学状态为刺激响应性融合纳米颗粒将大药物递送到细胞内部提供了重要标准。