Suppr超能文献

与任务参与相关的时变全脑功能网络连通性。

Time-varying whole-brain functional network connectivity coupled to task engagement.

作者信息

Xie Hua, Gonzalez-Castillo Javier, Handwerker Daniel A, Bandettini Peter A, Calhoun Vince D, Chen Gang, Damaraju Eswar, Liu Xiangyu, Mitra Sunanda

机构信息

Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA.

Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.

出版信息

Netw Neurosci. 2018 Oct 1;3(1):49-66. doi: 10.1162/netn_a_00051. eCollection 2019.

Abstract

Brain functional connectivity (FC), as measured by blood oxygenation level-dependent (BOLD) signal, fluctuates at the scale of 10s of seconds. It has recently been found that whole-brain dynamic FC (dFC) patterns contain sufficient information to permit identification of ongoing tasks. Here, we hypothesize that dFC patterns carry fine-grained information that allows for tracking short-term task engagement levels (i.e., 10s of seconds long). To test this hypothesis, 25 subjects were scanned continuously for 25 min while they performed and transitioned between four different tasks: working memory, visual attention, math, and rest. First, we estimated dFC patterns by using a sliding window approach. Next, we extracted two engagement-specific FC patterns representing active engagement and passive engagement by using -means clustering. Then, we derived three metrics from whole-brain dFC patterns to track engagement level, that is, dissimilarity between dFC patterns and engagement-specific FC patterns, and the level of brainwide integration level. Finally, those engagement markers were evaluated against windowed task performance by using a linear mixed effects model. Significant relationships were observed between abovementioned metrics and windowed task performance for the working memory task only. These findings partially confirm our hypothesis and underscore the potential of whole-brain dFC to track short-term task engagement levels.

摘要

通过血氧水平依赖(BOLD)信号测量的脑功能连接(FC)在数十秒的时间尺度上波动。最近发现,全脑动态FC(dFC)模式包含足够的信息来识别正在进行的任务。在此,我们假设dFC模式携带细粒度信息,能够追踪短期任务参与水平(即持续数十秒)。为了验证这一假设,25名受试者在执行四项不同任务(工作记忆、视觉注意、数学和休息)并在它们之间转换的过程中,被连续扫描25分钟。首先,我们使用滑动窗口方法估计dFC模式。接下来,我们通过k均值聚类提取了两种代表主动参与和被动参与的特定参与FC模式。然后,我们从全脑dFC模式中得出三个指标来追踪参与水平,即dFC模式与特定参与FC模式之间的差异,以及全脑整合水平。最后,通过线性混合效应模型,根据加窗任务表现对这些参与标记进行评估。仅在工作记忆任务中,观察到上述指标与加窗任务表现之间存在显著关系。这些发现部分证实了我们的假设,并强调了全脑dFC追踪短期任务参与水平的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a3/6326730/4ef6701817dd/netn-03-49-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验