Suppr超能文献

揭示并解决简化细胞相互作用群落中定量建模的挑战。

Uncovering and resolving challenges of quantitative modeling in a simplified community of interacting cells.

机构信息

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.

Department of Biology, Boston College, Boston, Massachusetts, United States of America.

出版信息

PLoS Biol. 2019 Feb 22;17(2):e3000135. doi: 10.1371/journal.pbio.3000135. eCollection 2019 Feb.

Abstract

Quantitative modeling is useful for predicting behaviors of a system and for rationally constructing or modifying the system. The predictive power of a model relies on accurate quantification of model parameters. Here, we illustrate challenges in parameter quantification and offer means to overcome these challenges, using a case example in which we quantitatively predict the growth rate of a cooperative community. Specifically, the community consists of two Saccharomyces cerevisiae strains, each engineered to release a metabolite required and consumed by its partner. The initial model, employing parameters measured in batch monocultures with zero or excess metabolite, failed to quantitatively predict experimental results. To resolve the model-experiment discrepancy, we chemically identified the correct exchanged metabolites, but this did not improve model performance. We then remeasured strain phenotypes in chemostats mimicking the metabolite-limited community environments, while mitigating or incorporating effects of rapid evolution. Almost all phenotypes we measured, including death rate, metabolite release rate, and the amount of metabolite consumed per cell birth, varied significantly with the metabolite environment. Once we used parameters measured in a range of community-like chemostat environments, prediction quantitatively agreed with experimental results. In summary, using a simplified community, we uncovered and devised means to resolve modeling challenges that are likely general to living systems.

摘要

定量建模对于预测系统的行为和合理构建或修改系统非常有用。模型的预测能力依赖于对模型参数的精确量化。在这里,我们以一个定量预测合作社区增长率的案例为例,说明了参数量化中的挑战,并提供了克服这些挑战的方法。具体来说,该社区由两个酿酒酵母菌株组成,每个菌株都经过工程设计,以释放其合作伙伴所需和消耗的代谢物。最初的模型,使用在零或过量代谢物的批量培养中测量的参数,无法定量预测实验结果。为了解决模型与实验的差异,我们通过化学方法鉴定了正确的交换代谢物,但这并没有提高模型性能。然后,我们在模拟代谢物限制的社区环境的恒化器中重新测量了菌株表型,同时减轻或纳入了快速进化的影响。我们测量的几乎所有表型,包括死亡率、代谢物释放率以及每个细胞产生的代谢物消耗量,都与代谢物环境有显著差异。一旦我们使用在一系列类似社区的恒化器环境中测量的参数,预测就与实验结果定量一致。总之,通过使用简化的社区,我们发现并设计了方法来解决可能普遍存在于生命系统中的建模挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8855/6402699/60253c3bc5ad/pbio.3000135.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验