Suppr超能文献

FuNP(神经影像预处理融合)流水线:一种用于功能磁共振成像的全自动预处理软件。

FuNP (Fusion of Neuroimaging Preprocessing) Pipelines: A Fully Automated Preprocessing Software for Functional Magnetic Resonance Imaging.

作者信息

Park Bo-Yong, Byeon Kyoungseob, Park Hyunjin

机构信息

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea.

Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.

出版信息

Front Neuroinform. 2019 Feb 11;13:5. doi: 10.3389/fninf.2019.00005. eCollection 2019.

Abstract

The preprocessing of functional magnetic resonance imaging (fMRI) data is necessary to remove unwanted artifacts and transform the data into a standard format. There are several neuroimaging data processing tools that are widely used, such as SPM, AFNI, FSL, FreeSurfer, Workbench, and fMRIPrep. Different data preprocessing pipelines yield differing results, which might reduce the reproducibility of neuroimaging studies. Here, we developed a preprocessing pipeline for T1-weighted structural MRI and fMRI data by combining components of well-known software packages to fully incorporate recent developments in MRI preprocessing into a single coherent software package. The developed software, called FuNP (Fusion of Neuroimaging Preprocessing) pipelines, is fully automatic and provides both volume- and surface-based preprocessing pipelines with a user-friendly graphical interface. The reliability of the software was assessed by comparing resting-state networks (RSNs) obtained using FuNP with pre-defined RSNs using open research data ( = 90). The obtained RSNs were well-matched with the pre-defined RSNs, suggesting that the pipelines in FuNP are reliable. In addition, image quality metrics (IQMs) were calculated from the results of three different software packages (i.e., FuNP, FSL, and fMRIPrep) to compare the quality of the preprocessed data. We found that our FuNP outperformed other software in terms of temporal characteristics and artifacts removal. We validated our pipeline with independent local data ( = 28) in terms of IQMs. The IQMs of our local data were similar to those obtained from the open research data. The codes for FuNP are available online to help researchers.

摘要

功能磁共振成像(fMRI)数据的预处理对于去除不需要的伪影并将数据转换为标准格式是必要的。有几种广泛使用的神经成像数据处理工具,如SPM、AFNI、FSL、FreeSurfer、Workbench和fMRIPrep。不同的数据预处理流程会产生不同的结果,这可能会降低神经成像研究的可重复性。在这里,我们通过组合知名软件包的组件,开发了一种用于T1加权结构MRI和fMRI数据的预处理流程,以将MRI预处理的最新进展充分整合到一个连贯的软件包中。开发的软件称为FuNP(神经成像预处理融合)流程,它是全自动的,并通过用户友好的图形界面提供基于体积和表面的预处理流程。通过将使用FuNP获得的静息态网络(RSN)与使用开放研究数据(n = 90)的预定义RSN进行比较,评估了该软件的可靠性。获得的RSN与预定义的RSN匹配良好,表明FuNP中的流程是可靠的。此外,从三个不同软件包(即FuNP、FSL和fMRIPrep)的结果中计算图像质量指标(IQM),以比较预处理数据的质量。我们发现,我们的FuNP在时间特征和伪影去除方面优于其他软件。我们使用独立的本地数据(n = 28)在IQM方面验证了我们的流程。我们本地数据的IQM与从开放研究数据中获得的IQM相似。FuNP的代码可在线获取,以帮助研究人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e98/6378808/b7a74f05327f/fninf-13-00005-g001.jpg

相似文献

2
fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines.
Brain Topogr. 2023 Mar;36(2):172-191. doi: 10.1007/s10548-022-00935-8. Epub 2022 Dec 27.
3
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
Neuroimage. 2020 Oct 1;219:117020. doi: 10.1016/j.neuroimage.2020.117020. Epub 2020 Jun 6.
6
Understanding the impact of preprocessing pipelines on neuroimaging cortical surface analyses.
Gigascience. 2021 Jan 22;10(1). doi: 10.1093/gigascience/giaa155.
7
Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system.
Neuroimage. 2008 Jul 15;41(4):1242-52. doi: 10.1016/j.neuroimage.2008.03.034. Epub 2008 Apr 3.
8
fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.
9
PREEMACS: Pipeline for preprocessing and extraction of the macaque brain surface.
Neuroimage. 2021 Feb 15;227:117671. doi: 10.1016/j.neuroimage.2020.117671. Epub 2020 Dec 24.
10
Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
Neuroimage. 2017 Jul 1;154:240-254. doi: 10.1016/j.neuroimage.2017.02.028. Epub 2017 Feb 12.

引用本文的文献

1
Alterations in the functional MRI-based temporal brain organisation in individuals with obesity.
Diabetes Obes Metab. 2025 Sep;27(9):5135-5146. doi: 10.1111/dom.16565. Epub 2025 Jun 25.
3
fMRI-based Alzheimer's disease detection via functional connectivity analysis: a systematic review.
PeerJ Comput Sci. 2024 Oct 16;10:e2302. doi: 10.7717/peerj-cs.2302. eCollection 2024.
5
Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes.
Annu Rev Biomed Data Sci. 2024 Aug;7(1):391-418. doi: 10.1146/annurev-biodatasci-102423-121021. Epub 2024 Jul 24.
8
The evolution of Big Data in neuroscience and neurology.
J Big Data. 2023;10(1):116. doi: 10.1186/s40537-023-00751-2. Epub 2023 Jul 10.
9
Normalization Strategies in Multi-Center Radiomics Abdominal MRI: Systematic Review and Meta-Analyses.
IEEE Open J Eng Med Biol. 2023 Apr 28;4:67-76. doi: 10.1109/OJEMB.2023.3271455. eCollection 2023.
10
Automatic theranostics for long-term neurorehabilitation after stroke.
Front Aging Neurosci. 2023 May 16;15:1154795. doi: 10.3389/fnagi.2023.1154795. eCollection 2023.

本文引用的文献

1
fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.
2
A comparison of publicly available linear MRI stereotaxic registration techniques.
Neuroimage. 2018 Jul 1;174:191-200. doi: 10.1016/j.neuroimage.2018.03.025. Epub 2018 Mar 13.
3
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
4
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites.
PLoS One. 2017 Sep 25;12(9):e0184661. doi: 10.1371/journal.pone.0184661. eCollection 2017.
5
The impact of T1 versus EPI spatial normalization templates for fMRI data analyses.
Hum Brain Mapp. 2017 Nov;38(11):5331-5342. doi: 10.1002/hbm.23737. Epub 2017 Jul 26.
6
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
Neuroimage. 2017 Jul 1;154:174-187. doi: 10.1016/j.neuroimage.2017.03.020. Epub 2017 Mar 14.
7
Hand classification of fMRI ICA noise components.
Neuroimage. 2017 Jul 1;154:188-205. doi: 10.1016/j.neuroimage.2016.12.036. Epub 2016 Dec 16.
8
Methods for cleaning the BOLD fMRI signal.
Neuroimage. 2017 Jul 1;154:128-149. doi: 10.1016/j.neuroimage.2016.12.018. Epub 2016 Dec 9.
10
The Human Connectome Project's neuroimaging approach.
Nat Neurosci. 2016 Aug 26;19(9):1175-87. doi: 10.1038/nn.4361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验