Suppr超能文献

层状结构阴极中颗粒内开裂对锂离子电池高压应用的关键阻碍。

Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries.

机构信息

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA.

Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA.

出版信息

Nat Commun. 2017 Jan 16;8:14101. doi: 10.1038/ncomms14101.

Abstract

LiNiMnCoO-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNiMnCoO cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials.

摘要

层状 LiNiMnCoO 阴极通常以二次颗粒的形式制备,由紧密堆积的一次颗粒组成。这为高能量密度和缓解阴极副反应/腐蚀提供了优势,但也引入了诸如颗粒间开裂等缺陷。在这里,我们通过使用先进的扫描透射电子显微镜报告了在商业 LiNiMnCoO 阴极中观察到的意想不到的颗粒内裂纹成核和生长的现象。我们发现,颗粒内裂纹的形成与高压循环直接相关,这是一个电化学驱动和扩散控制的过程。颗粒内裂纹的形成是从晶粒内部开始的,这是基于位错的裂纹萌生机制的结果。这一观察结果与一般的理论模型形成鲜明对比,后者预测颗粒内裂纹是从晶界或颗粒表面开始萌生的。我们的研究强调,保持结构稳定性是实现层状阴极材料高压运行的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13b8/5241805/b8b29ab96f2b/ncomms14101-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验