Lv Lin, Han Xing, Sun Zhengxiang, Li Zhaoguang, Wang Xiuying, Jiang Tong, Liu Yiren, Li Tianshu, Xu Jingjing, You Liangzhen, Yao Guihua, Sun Feng-Rong, Xing Jianping
School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China.
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
J Imaging Inform Med. 2025 May 12. doi: 10.1007/s10278-025-01532-4.
Echocardiogram analysis plays a crucial role in assessing and diagnosing cardiac function, providing essential data to support medical diagnoses of heart disease. A key task, accurately identifying and segmenting the left ventricle (LV) in echocardiograms, remains challenging and labor-intensive. Current automated cardiac segmentation methods often lack the necessary accuracy and reproducibility, while semi-automated or manual annotations are excessively time-consuming. To address these limitations, we propose a novel segmentation framework, semi-and self-supervised learning with dual attention (SSL-DA) for echocardiogram segmentation. We start with a temporal masking network for pre-training. This network captures valuable information, such as echocardiogram periodicity. It also provides optimized initialization parameters for LV segmentation. We then employ a semi-supervised network to automatically segment the left ventricle, enhancing the model's learning with channel and spatial attention mechanisms to capture global channel dependencies and spatial dependencies across annotations. We evaluated SSL-DA on the publicly available EchoNet-Dynamic dataset, achieving a Dice similarity coefficient of 93.34% (95% CI, 93.23-93.46%), outperforming most prior CNN-based models. To further assess the generalization ability of SSL-DA, we conducted ablation experiments on the CAMUS dataset. Experimental results confirm that SSL-DA can quickly and accurately segment the left ventricle in echocardiograms, showing its potential for robust clinical application.
超声心动图分析在评估和诊断心脏功能方面发挥着关键作用,提供重要数据以支持心脏病的医学诊断。一项关键任务,即准确识别和分割超声心动图中的左心室(LV),仍然具有挑战性且劳动强度大。当前的自动心脏分割方法往往缺乏必要的准确性和可重复性,而半自动或手动标注则过于耗时。为了解决这些局限性,我们提出了一种新颖的分割框架,即用于超声心动图分割的半监督和自监督双注意力学习(SSL-DA)。我们从一个用于预训练的时间掩码网络开始。该网络捕获有价值的信息,如超声心动图的周期性。它还为左心室分割提供优化的初始化参数。然后,我们使用一个半监督网络自动分割左心室,通过通道和空间注意力机制增强模型的学习,以捕获跨标注的全局通道依赖性和空间依赖性。我们在公开可用的EchoNet-Dynamic数据集上评估了SSL-DA,获得了93.34%(95%置信区间,93.23 - 93.46%)的骰子相似系数,优于大多数基于卷积神经网络的先前模型。为了进一步评估SSL-DA的泛化能力,我们在CAMUS数据集上进行了消融实验。实验结果证实,SSL-DA能够快速准确地分割超声心动图中的左心室,显示出其在稳健临床应用中的潜力。