Suppr超能文献

心脏超声中无标签分割的自监督学习

Self-supervised learning for label-free segmentation in cardiac ultrasound.

作者信息

Ferreira Danielle L, Lau Connor, Salaymang Zaynaf, Arnaout Rima

机构信息

Department of Medicine, Division of Cardiology, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, USA.

Bakar Computational Health Sciences Institute, University of California, San Francisco, 490 Illinois St, San Francisco, CA, USA.

出版信息

Nat Commun. 2025 Apr 30;16(1):4070. doi: 10.1038/s41467-025-59451-5.

Abstract

Segmentation and measurement of cardiac chambers from ultrasound is critical, but laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same problematic manual annotations. We build a pipeline for self-supervised segmentation combining computer vision, clinical knowledge, and deep learning. We train on 450 echocardiograms and test on 18,423 echocardiograms (including external data), using the resulting segmentations to calculate measurements. Coefficient of determination (r) between clinically measured and pipeline-predicted measurements (0.55-0.84) are comparable to inter-clinician variation and to supervised learning. Average accuracy for detecting abnormal chambers is 0.85 (0.71-0.97). A subset of test echocardiograms (n = 553) have corresponding cardiac MRIs (the gold standard). Correlation between pipeline and MRI measurements is similar to that of clinical echocardiogram. Finally, the pipeline segments the left ventricle with an average Dice score of 0.89 (95% CI [0.89]). Our results demonstrate a manual-label free, clinically valid, and scalable method for segmentation from ultrasound.

摘要

利用超声对心脏腔室进行分割和测量至关重要,但这项工作既费力又难以保证可重复性。神经网络可以提供帮助,但监督式方法需要同样存在问题的手动标注。我们构建了一个结合计算机视觉、临床知识和深度学习的自监督分割流程。我们使用450份超声心动图进行训练,并在18423份超声心动图(包括外部数据)上进行测试,利用得到的分割结果来计算测量值。临床测量值与流程预测测量值之间的决定系数(r)为0.55 - 0.84,与临床医生之间的差异以及监督学习相当。检测异常腔室的平均准确率为0.85(0.71 - 0.97)。一部分测试超声心动图(n = 553)有对应的心脏磁共振成像(金标准)。流程测量值与磁共振成像测量值之间的相关性与临床超声心动图相似。最后,该流程分割左心室的平均骰子系数得分为0.89(95%置信区间[0.89])。我们的结果展示了一种无需手动标注、临床有效的超声分割可扩展方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b9/12043926/a89140499116/41467_2025_59451_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验