Wavefront-Engineering Microscopy group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, 45 rue des Saints-Pères, Paris, France.
Wavefront-Engineering Microscopy group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, 45 rue des Saints-Pères, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
Curr Opin Neurobiol. 2018 Jun;50:179-189. doi: 10.1016/j.conb.2018.03.008. Epub 2018 Apr 7.
Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility.
光遗传学神经元靶向结合单光子宽场照明已经在神经科学中证明了其巨大的潜力,使我们能够对整个神经元网络进行光学控制,并厘清它们在特定行为控制中的作用。然而,确定单个或一组神经元如何控制特定行为,或者在特定任务中功能相同的神经元如何连接,或者行为如何通过神经元连接的复杂布线图实时进行修改,这需要更复杂的方法,使我们能够以单细胞精度和毫秒时间分辨率驱动神经元回路的活动。这一方面促使了使用两种方法(扫描和并行照明)中的一种或混合使用的灵活双光子(2P)光遗传学激活的光学方法的发展。另一方面,它刺激了具有改良光谱特性、通道动力学和表达空间分布的新型光遗传学蛋白的工程设计,为每种应用选择合适的光遗传学蛋白提供了必要的灵活性。需要以毫秒时间分辨率对多个目标进行光学操纵,这使得三维(3D)并行全息照明成为 3D 组织的神经元回路光学控制的首选技术。如今,3D 并行照明有几种互补的变体,每种变体在光均匀性、时间精度和轴向分辨率方面的复杂性、光均匀性和时间精度都有所不同。与此同时,能够在 3D 体积中达到数百个目标的可能性促使人们开发了低重复率放大激光源,从而实现了高峰值功率,同时保持了对每个细胞的低平均功率刺激。所有这些进展为神经元回路的精确光学操纵开辟了道路,具有前所未有的精度和灵活性。