Suppr超能文献

利用无基质激光解吸电离质谱进行活单细胞代谢组学研究以探究微藻生理学

Live Single-Cell Metabolomics With Matrix-Free Laser/Desorption Ionization Mass Spectrometry to Address Microalgal Physiology.

作者信息

Baumeister Tim U H, Vallet Marine, Kaftan Filip, Svatoš Aleš, Pohnert Georg

机构信息

Max Planck Fellow Group on Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany.

Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany.

出版信息

Front Plant Sci. 2019 Feb 18;10:172. doi: 10.3389/fpls.2019.00172. eCollection 2019.

Abstract

Unicellular phototrophic algae can form massive blooms with up to millions of individual cells per milliliter in freshwater and marine ecosystems. Despite the temporal dominance of bloom formers many algal species can co-exist and compete for nutrients and space, creating a complex and diverse community. While microscopy and single cell genomics can address the taxonomic inventory, the cellular metabolome has yet to be thoroughly explored to determine the physiological status of microalgae. This might, however, provide a key to understand the observed species diversity in the homogeneous environment. Here, we introduce an effective, rapid and versatile method to analyze living single cells from aqueous substrata with laser-desorption/ionization mass spectrometry (LDI-MS) using a simple and inexpensive matrix-free support. The cells deposited on a cultivation-medium wetted support are analyzed with minimal disturbance as they remain in their natural viable state until their disruption during LDI-MS. Metabolites desorbed from single cells are analyzed on High-Resolution Mass Spectrometry (HR-MS) using the Orbitrap FT-MS technology to fingerprint cellular chemistry. This live single-cell mass spectrometry (LSC-MS) allows assessing the physiological status and strain-specifics of different microalgae, including marine diatoms and freshwater chlorophytes, at the single-cell level. We further report a reliable and robust data treatment pipeline to perform multivariate statistics on the replicated LSC-MS data. Comparing single cell MS spectra from natural phytoplankton samples and from laboratory strains allows the identification and discrimination of inter and intra-specific metabolic variability and thereby has promising applications in addressing highly complex phytoplankton communities. Notably, the herein described matrix-free live-single-cell LDI-HR-MS approach enables monitoring dynamics of the plankton and might explain why key-players survive, thrive, avoid selective feeding or pathogenic virus and bacteria, while others are overcome and die.

摘要

单细胞光合藻类在淡水和海洋生态系统中可形成大量水华,每毫升中含有多达数百万个个体细胞。尽管水华形成者在特定时期占主导地位,但许多藻类物种仍能共存,并竞争营养物质和空间,从而形成一个复杂多样的群落。虽然显微镜和单细胞基因组学可以解决分类学问题,但细胞代谢组尚未得到充分探索,以确定微藻的生理状态。然而,这可能是理解在均质环境中观察到的物种多样性的关键。在此,我们介绍一种有效、快速且通用的方法,使用简单且廉价的无基质载体,通过激光解吸/电离质谱(LDI-MS)分析来自水性基质的活单细胞。沉积在浸湿了培养基的载体上的细胞在分析时受到的干扰最小,因为它们在LDI-MS分析过程中被破坏之前一直保持其自然存活状态。使用轨道阱傅里叶变换质谱技术在高分辨率质谱(HR-MS)上分析从单细胞解吸的代谢物,以确定细胞化学特征。这种活单细胞质谱(LSC-MS)能够在单细胞水平上评估不同微藻的生理状态和菌株特异性,包括海洋硅藻和淡水绿藻。我们还报告了一种可靠且强大的数据处理流程,用于对重复的LSC-MS数据进行多变量统计分析。比较天然浮游植物样本和实验室菌株的单细胞质谱图,能够识别和区分种间和种内的代谢变异性,因此在解决高度复杂的浮游植物群落问题方面具有广阔的应用前景。值得注意的是,本文所述的无基质活单细胞LDI-HR-MS方法能够监测浮游生物的动态,或许可以解释为什么关键物种能够存活、繁衍、避免被选择性摄食或遭受致病病毒和细菌的侵害,而其他物种却被淘汰或死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff94/6387974/f34138202b9e/fpls-10-00172-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验