Ma Jun, Wang Jenny, Ghoraie Laleh Soltan, Men Xin, Haibe-Kains Benjamin, Dai Penggao
National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
Front Pharmacol. 2019 Feb 19;10:109. doi: 10.3389/fphar.2019.00109. eCollection 2019.
The interactions between drugs and their target proteins induce altered expression of genes involved in complex intracellular networks. The properties of these functional network modules are critical for the identification of drug targets, for drug repurposing, and for understanding the underlying mode of action of the drug. The topological modules generated by a computational approach are defined as functional clusters. However, the functions inferred for these topological modules extracted from a large-scale molecular interaction network, such as a protein-protein interaction (PPI) network, could differ depending on different cluster detection algorithms. Moreover, the dynamic gene expression profiles among tissues or cell types causes differential functional interaction patterns between the molecular components. Thus, the connections in the PPI network should be modified by the transcriptomic landscape of specific cell lines before producing topological clusters. Here, we systematically investigated the clusters of a cell-based PPI network by using four cluster detection algorithms. We subsequently compared the performance of these algorithms for target gene prediction, which integrates gene perturbation data with the cell-based PPI network using two drug target prioritization methods, shortest path and diffusion correlation. In addition, we validated the proportion of perturbed genes in clusters by finding candidate anti-breast cancer drugs and confirming our predictions using literature evidence and cases in the ClinicalTrials.gov. Our results indicate that the Walktrap (CW) clustering algorithm achieved the best performance overall in our comparative study.
药物与其靶蛋白之间的相互作用会诱导参与复杂细胞内网络的基因表达发生改变。这些功能网络模块的特性对于药物靶点的识别、药物再利用以及理解药物的潜在作用模式至关重要。通过计算方法生成的拓扑模块被定义为功能簇。然而,从大规模分子相互作用网络(如蛋白质 - 蛋白质相互作用(PPI)网络)中提取的这些拓扑模块所推断的功能,可能会因不同的簇检测算法而有所不同。此外,组织或细胞类型之间动态的基因表达谱会导致分子成分之间功能相互作用模式的差异。因此,在生成拓扑簇之前,PPI网络中的连接应根据特定细胞系的转录组景观进行修改。在这里,我们使用四种簇检测算法系统地研究了基于细胞的PPI网络的簇。随后,我们使用最短路径和扩散相关性这两种药物靶点优先级方法,将基因扰动数据与基于细胞的PPI网络相结合,比较了这些算法在预测靶基因方面的性能。此外,我们通过寻找候选抗乳腺癌药物并使用ClinicalTrials.gov中的文献证据和案例来证实我们的预测,从而验证了簇中受扰动基因的比例。我们的结果表明,在我们的比较研究中,Walktrap(CW)聚类算法总体上表现最佳。