Suppr超能文献

小儿心肌炎室性心律失常风险的计算识别

Computational Identification of Ventricular Arrhythmia Risk in Pediatric Myocarditis.

作者信息

Cartoski Mark J, Nikolov Plamen P, Prakosa Adityo, Boyle Patrick M, Spevak Philip J, Trayanova Natalia A

机构信息

Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Pediatr Cardiol. 2019 Apr;40(4):857-864. doi: 10.1007/s00246-019-02082-7. Epub 2019 Mar 6.

Abstract

Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.

摘要

由于心肌炎症和重塑,心肌炎患儿发生室性心动过速(VT)的风险增加。目前,该人群中尚无公认的VT风险分层方法。我们假设,根据心脏延迟钆增强磁共振成像(LGE-MRI)开发的个性化模型,可使用先前验证的方案来确定心肌炎患者的VT风险。从12例诊断为心肌炎的患者的LGE-MRI扫描中重建了个性化的三维计算心脏模型。本回顾性分析纳入了4例临床VT患者和8例无VT患者。在每个模型中,我们纳入了纤维化和心肌纤维方向的个性化空间分布。然后,通过从分布于两个心室的26个部位快速起搏,评估每个模型中的VT诱发能力。所有临床VT患者的多个起搏部位均诱发了持续性折返性VT。在8例无临床VT的患者中,我们在模拟中使用快速心室起搏未能诱发持续性折返。将我们的非侵入性方法应用于心肌炎患儿有可能正确识别那些有发生VT风险的患者。

相似文献

引用本文的文献

5
Digital twins in medicine.医学中的数字孪生。
Nat Comput Sci. 2024 Mar;4(3):184-191. doi: 10.1038/s43588-024-00607-6. Epub 2024 Mar 26.
10
Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient.心脏生长对单心室患者电不同步的影响。
Comput Methods Biomech Biomed Engin. 2024 Jun;27(8):1011-1027. doi: 10.1080/10255842.2023.2222203. Epub 2023 Jun 14.

本文引用的文献

2
Computational Investigation of a Self-Powered Fontan Circulation.自驱动Fontan循环的计算研究
Cardiovasc Eng Technol. 2018 Jun;9(2):202-216. doi: 10.1007/s13239-018-0342-5. Epub 2018 Feb 20.
3
Utility of cardiac MRI in paediatric myocarditis.心脏磁共振成像在小儿心肌炎中的应用价值。
Cardiol Young. 2018 Mar;28(3):377-385. doi: 10.1017/S1047951117001093. Epub 2017 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验