Suppr超能文献

从一种生物肥料真菌中挖掘基因组和生物合成多酮,该真菌可以促进植物中铁的还原吸收。

Genome mining and biosynthesis of a polyketide from a biofertilizer fungus that can facilitate reductive iron assimilation in plant.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095.

Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5499-5504. doi: 10.1073/pnas.1819998116. Epub 2019 Mar 6.

Abstract

Fungi have the potential to produce a large repertoire of bioactive molecules, many of which can affect the growth and development of plants. Genomic survey of sequenced biofertilizer fungi showed many secondary metabolite gene clusters are anchored by iterative polyketide synthases (IPKSs), which are multidomain enzymes noted for generating diverse small molecules. Focusing on the biofertilizer t-22, we identified and characterized a cryptic IPKS-containing cluster that synthesizes tricholignan A, a redox-active -hydroquinone. Tricholignan A is shown to reduce Fe(III) and may play a role in promoting plant growth under iron-deficient conditions. The construction of tricholignan by a pair of collaborating IPKSs was investigated using heterologous reconstitution and biochemical studies. A regioselective methylation step is shown to be a key step in formation of the -hydroquinone. The responsible methyltransferase (MT) is fused with an N-terminal pseudo-acyl carrier protein (ψACP), in which the state of the ACP is essential for methylation of the growing polyketide chain. The ψACP is proposed to bind to the IPKS and enable the MT to access the growing polyketide. Our studies show that a genome-driven approach to discovering bioactive natural products from biofertilizer fungi can lead to unique compounds and biosynthetic knowledge.

摘要

真菌具有产生大量生物活性分子的潜力,其中许多可以影响植物的生长和发育。对已测序的生物肥料真菌进行基因组调查表明,许多次级代谢物基因簇由迭代聚酮合酶 (IPKS) 锚定,这些酶是多结构域酶,以产生多样化的小分子而闻名。我们专注于生物肥料 t-22,鉴定并表征了一个隐藏的含有 IPKS 的簇,该簇合成了三藜芦醇 A,一种氧化还原活性的 -对苯二酚。三藜芦醇 A 被证明可以还原 Fe(III),并可能在缺铁条件下促进植物生长中发挥作用。使用异源重组和生化研究研究了一对协作的 IPKS 合成三藜芦醇的过程。显示出一个区域选择性甲基化步骤是形成 -对苯二酚的关键步骤。负责的甲基转移酶 (MT) 与 N 端假酰基载体蛋白 (ψACP) 融合,其中 ACP 的 状态对于生长聚酮链的甲基化至关重要。提出 ψACP 与 IPKS 结合并使 MT 能够访问生长中的聚酮。我们的研究表明,从生物肥料真菌中发现生物活性天然产物的基于基因组的方法可以产生独特的化合物和生物合成知识。

相似文献

3
[Progress in fungal polyketide biosynthesis].[真菌聚酮生物合成的研究进展]
Sheng Wu Gong Cheng Xue Bao. 2018 Feb 25;34(2):151-164. doi: 10.13345/j.cjb.170219.
4
A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi.地衣真菌中聚酮合酶基因簇的综合目录。
J Ind Microbiol Biotechnol. 2018 Dec;45(12):1067-1081. doi: 10.1007/s10295-018-2080-y. Epub 2018 Sep 11.
5

引用本文的文献

5
What are the 100 most cited fungal genera?被引用次数最多的100个真菌属有哪些?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.

本文引用的文献

2
Exploring Fungal Polyketide C-Methylation through Combinatorial Domain Swaps.通过组合结构域交换探索真菌聚酮 C-甲基化。
ACS Chem Biol. 2018 Nov 16;13(11):3043-3048. doi: 10.1021/acschembio.8b00429. Epub 2018 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验