Suppr超能文献

卷积神经网络对视觉神经元非线性感受野的特征描述。

Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network.

机构信息

Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan.

Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.

出版信息

Sci Rep. 2019 Mar 7;9(1):3791. doi: 10.1038/s41598-019-40535-4.

Abstract

A comprehensive understanding of the stimulus-response properties of individual neurons is necessary to crack the neural code of sensory cortices. However, a barrier to achieving this goal is the difficulty of analysing the nonlinearity of neuronal responses. Here, by incorporating convolutional neural network (CNN) for encoding models of neurons in the visual cortex, we developed a new method of nonlinear response characterisation, especially nonlinear estimation of receptive fields (RFs), without assumptions regarding the type of nonlinearity. Briefly, after training CNN to predict the visual responses to natural images, we synthesised the RF image such that the image would predictively evoke a maximum response. We first demonstrated the proof-of-principle using a dataset of simulated cells with various types of nonlinearity. We could visualise RFs with various types of nonlinearity, such as shift-invariant RFs or rotation-invariant RFs, suggesting that the method may be applicable to neurons with complex nonlinearities in higher visual areas. Next, we applied the method to a dataset of neurons in mouse V1. We could visualise simple-cell-like or complex-cell-like (shift-invariant) RFs and quantify the degree of shift-invariance. These results suggest that CNN encoding model is useful in nonlinear response analyses of visual neurons and potentially of any sensory neurons.

摘要

要破解感觉皮层的神经编码,就必须全面了解单个神经元的刺激-反应特性。然而,实现这一目标的一个障碍是分析神经元反应非线性的难度。在这里,我们通过将卷积神经网络 (CNN) 纳入视觉皮层神经元的编码模型,开发了一种新的非线性响应特征描述方法,特别是无需对非线性类型做出假设的感受野 (RF) 的非线性估计。简而言之,在训练 CNN 以预测对自然图像的视觉反应后,我们合成了 RF 图像,以使图像能够预测性地引发最大反应。我们首先使用具有各种类型非线性的模拟细胞数据集来证明原理。我们可以可视化具有各种类型非线性的 RF,例如平移不变 RF 或旋转不变 RF,这表明该方法可能适用于更高视觉区域中具有复杂非线性的神经元。接下来,我们将该方法应用于小鼠 V1 中的神经元数据集。我们可以可视化简单细胞样或复杂细胞样(平移不变)RF,并量化平移不变性的程度。这些结果表明,CNN 编码模型可用于视觉神经元的非线性响应分析,并且可能适用于任何感觉神经元。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e30c/6405885/67100d7e82fb/41598_2019_40535_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验