文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 打印聚合物-矿物复合生物材料用于骨组织工程:制造与表征。

3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.

机构信息

Tissue Bioengineering, University of Bordeaux, Bordeaux, France.

Faculty of Dentistry, University of Bordeaux, Bordeaux, France.

出版信息

J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2579-2595. doi: 10.1002/jbm.b.34348. Epub 2019 Mar 8.


DOI:10.1002/jbm.b.34348
PMID:30848068
Abstract

Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three-dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state-of-the-art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579-2595, 2019.

摘要

应用于骨组织工程应用的增材制造技术需要开发新的生物材料配方。可以使用不同的三维(3D)打印技术,并且通常使用聚合物来制造 3D 打印的骨支架。然而,这些单独使用的材料不具有有效的成骨促进潜力,用于骨再生。越来越多的研究报告称,聚合物与矿物质结合以提高其生物活性。本综述介绍了将聚合物与矿物质结合用于骨组织工程的现有 3D 打印复合生物材料的最新技术。还讨论了用于评估支架性能的表征技术。必须考虑许多参数来制造用于骨修复的 3D 打印材料(3D 打印方法、聚合物/矿物质组合的类型和比例),因为所有这些参数都影响材料的最终性能。每种聚合物和矿物质都有其自身的优点和缺点,并且在文献中描述了许多复合材料。这些复合材料的每个组件都具有特定的性能,它们的组合可以提高 3D 打印支架的生物整合性。© 2019 Wiley Periodicals,Inc. J Biomed Mater Res Part B:Appl Biomater 107B:2579-2595,2019。

相似文献

[1]
3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.

J Biomed Mater Res B Appl Biomater. 2019-3-8

[2]
Three-dimensional (3D) printed scaffold and material selection for bone repair.

Acta Biomater. 2018-11-24

[3]
A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.

J Biomed Mater Res B Appl Biomater. 2018-10-9

[4]
Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.

Biomed Phys Eng Express. 2021-10-7

[5]
3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.

Acta Biomater. 2018-8-28

[6]
3D Printed Composite Scaffolds in Bone Tissue Engineering: A Systematic Review.

Curr Stem Cell Res Ther. 2022

[7]
Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

Adv Healthc Mater. 2018-4

[8]
3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.

Acta Biomater. 2017-12

[9]
3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration.

Int J Biol Macromol. 2023-2-28

[10]
Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.

J Biomed Mater Res A. 2017-5

引用本文的文献

[1]
Zinc Doped Synthetic Polymer Composites for Bone Regeneration: A Promising Strategy to Repair Bone Defects.

Int J Nanomedicine. 2025-7-1

[2]
Synthesis, Characterization, and Osteogenic Ability of Fibrillar Polycaprolactone Scaffolds Containing Hydroxyapatite Nanoparticles.

ACS Appl Mater Interfaces. 2025-4-9

[3]
Construction of a 3D Degradable PLLA/β-TCP/CS Scaffold for Establishing an Induced Membrane Inspired by the Modified Single-Stage Masquelet Technique.

ACS Biomater Sci Eng. 2025-3-10

[4]
Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix.

J Tissue Eng. 2024-12-12

[5]
Comparative histomorphological assessment of the osteoinductive capacity of a nanofibrillated cellulose-based composite and autologous blood clot.

J Exp Orthop. 2024-11-5

[6]
Physicochemical and Biological Characterization of Gelatin/Alginate Scaffolds Reinforced with -TCP, FDBA, and SrHA: Insights into Stem Cell Behavior and Osteogenic Differentiation.

Int J Biomater. 2024-8-19

[7]
Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications.

Adv Healthc Mater. 2024-12

[8]
Structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering.

Burns Trauma. 2024-6-9

[9]
Biocompatible Composite Filaments Printable by Fused Deposition Modelling Technique: Selection of Tuning Parameters by Influence of Biogenic Hydroxyapatite and Graphene Nanoplatelets Ratios.

Biomimetics (Basel). 2024-3-20

[10]
A novel fluffy PLGA/HA composite scaffold for bone defect repair.

J Mater Sci Mater Med. 2024-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索