From the Department of Biochemistry and.
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.
J Biol Chem. 2019 Apr 19;294(16):6522-6530. doi: 10.1074/jbc.AC118.007225. Epub 2019 Mar 8.
Oxidative modifications of cysteine residues are an important component in signaling pathways, enzymatic regulation, and redox homeostasis. Current direct and indirect methods detect specific modifications and a general binary population of "free" or "oxidized" cysteines, respectively. In an effort to combine both direct and indirect detection strategies, here we developed a method that we designate isotopic tagging of oxidized and reduced cysteines (iTORC). This method uses synthetic molecules for rapid isotopic coding of sulfenic acids, reduced cysteines, and disulfides in cells. Our approach utilizes isotopically distinct benzothiazine and halogenated benzothiazine probes to sequentially alkylate sulfenic acids and then free thiols and, finally, after a reduction step, cysteines oxidized to disulfides or other phosphine-reducible states. We ascertained that the iodinated benzothiazine probe has reduced cross-reactivity toward primary amines and is highly reactive with the cysteine of GSH, with a calculated rate constant of 2 × 10 m s (pH 8.0, 23 °C) ( 10-20 times faster than ethylmaleimide). We applied iTORC to a mouse hepatocyte lysate to identify known sulfenylated and disulfide-bonded proteins, including elongation factor 1-α1 and mouse serum albumin, and found that iTORC reliably detected their expected oxidation status. This method can be easily employed to study the effects of oxidants on recombinant proteins and cell and tissue extracts, and the efficiencies of the alkylating agents enable completion of all three labeling steps within 2 h. In summary, we demonstrate here that halogenated benzothiazine-based alkylating agents can be utilized to rapidly measure the cellular thiol status in cells.
半胱氨酸残基的氧化修饰是信号通路、酶调节和氧化还原平衡中的一个重要组成部分。目前的直接和间接方法分别检测特定的修饰和“自由”或“氧化”半胱氨酸的一般二元群体。为了结合直接和间接检测策略,我们在这里开发了一种方法,我们将其命名为氧化和还原半胱氨酸的同位素标记(iTORC)。该方法使用合成分子快速对细胞中的亚磺酰基、还原半胱氨酸和二硫化物进行同位素编码。我们的方法利用同位素不同的苯并噻嗪和卤代苯并噻嗪探针,依次烷基化亚磺酰基和游离巯基,最后在还原步骤后,将氧化为二硫化物或其他可被膦还原的状态的半胱氨酸。我们确定碘代苯并噻嗪探针对半胱氨酸的交叉反应性降低,并且与 GSH 的半胱氨酸反应性非常高,计算的速率常数为 2×10 m s(pH 8.0,23°C)(比乙二醛快 10-20 倍)。我们将 iTORC 应用于小鼠肝细胞裂解物中,以鉴定已知的亚磺酰化和二硫键结合蛋白,包括延伸因子 1-α1 和小鼠血清白蛋白,并发现 iTORC 可靠地检测到它们预期的氧化状态。该方法可以很容易地用于研究氧化剂对重组蛋白和细胞和组织提取物的影响,并且烷基化剂的效率可以使所有三个标记步骤在 2 小时内完成。总之,我们在这里证明,卤代苯并噻嗪基烷基化剂可用于快速测量细胞中的细胞硫醇状态。