文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

加热还是不加热:碳化铁纳米颗粒在磁加热中的性能研究。

To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating.

机构信息

LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France.

出版信息

Nanoscale. 2019 Mar 21;11(12):5402-5411. doi: 10.1039/c8nr10235j.


DOI:10.1039/c8nr10235j
PMID:30854537
Abstract

Heating magnetic nanoparticles with high frequency magnetic fields is a topic of interest for biological applications (magnetic hyperthermia) as well as for heterogeneous catalysis. This study shows why FeC NPs of similar structures and static magnetic properties display radically different heating power (SAR from 0 to 2 kW g-1). By combining results from Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and static and time-dependent high-frequency magnetic measurements, we propose a model describing the heating mechanism in FeC nanoparticles. Using, for the first time, time-dependent high-frequency hysteresis loop measurements, it is shown that in the samples displaying the larger heating powers, the hysteresis is strongly time dependent. More precisely, the hysteresis area increases by a factor 10 on a timescale of a few tens of seconds. This effect is directly related to the ability of the nanoparticles to form chains under magnetic excitation, which depends on the presence or not of strong dipolar couplings. These differences are due to different ligand concentrations on the surface of the particles. As a result, this study allows the design of a scalable synthesis of nanomaterials displaying a controllable and reproducible SAR.

摘要

用高频磁场加热磁性纳米粒子是生物应用(磁热疗)以及多相催化领域的研究热点。本研究表明,为什么具有相似结构和静态磁性的 FeC 纳米粒子显示出截然不同的加热能力(比吸收率从 0 到 2kW/g)。通过结合透射电子显微镜(TEM)、动态光散射(DLS)以及静态和时变高频磁测量的结果,我们提出了一个描述 FeC 纳米粒子加热机制的模型。首次使用时变高频磁滞回线测量表明,在显示较大加热功率的样品中,磁滞回线强烈依赖于时间。更确切地说,磁滞回线面积在几十秒的时间内增加了 10 倍。这种效应与纳米粒子在磁场激发下形成链的能力直接相关,而这又取决于是否存在强偶极子耦合。这些差异是由于粒子表面配体浓度不同造成的。因此,这项研究为可控制和可重复的比吸收率设计可控和可重复的纳米材料的规模化合成提供了指导。

相似文献

[1]
To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating.

Nanoscale. 2019-3-21

[2]
Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.

Biochim Biophys Acta Gen Subj. 2016-12-14

[3]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

[4]
Magnetically Induced Continuous CO Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power.

Angew Chem Int Ed Engl. 2016-11-22

[5]
Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.

Biomagn Res Technol. 2008-10-20

[6]
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

Nanoscale. 2014-11-7

[7]
Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis.

Nano Lett. 2015-4-21

[8]
Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications.

Nanomaterials (Basel). 2020-10-23

[9]
Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles.

Phys Chem Chem Phys. 2016-4-28

[10]
Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.

ACS Nano. 2017-6-21

引用本文的文献

[1]
Heating Efficiency of Different Magnetotactic Bacterial Species: Influence of Magnetosome Morphology and Chain Arrangement.

ACS Appl Mater Interfaces. 2024-12-11

[2]
Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water.

ACS Catal. 2022-7-1

[3]
Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects.

Int J Mol Sci. 2022-9-26

[4]
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications.

Nanoscale Adv. 2021-1-15

[5]
Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms.

Nanoscale Adv. 2020-9-1

[6]
Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field.

Nanoscale Adv. 2021-8-13

[7]
Properties of assembly of superparamagnetic nanoparticles in viscous liquid.

Sci Rep. 2021-3-26

[8]
Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis.

ACS Appl Nano Mater. 2020-7-24

[9]
Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization.

ACS Omega. 2020-5-13

[10]
Rapid Millifluidic Synthesis of Stable High Magnetic Moment FeC Nanoparticles for Hyperthermia.

ACS Appl Mater Interfaces. 2020-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索