LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France.
Nanoscale. 2019 Mar 21;11(12):5402-5411. doi: 10.1039/c8nr10235j.
Heating magnetic nanoparticles with high frequency magnetic fields is a topic of interest for biological applications (magnetic hyperthermia) as well as for heterogeneous catalysis. This study shows why FeC NPs of similar structures and static magnetic properties display radically different heating power (SAR from 0 to 2 kW g-1). By combining results from Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and static and time-dependent high-frequency magnetic measurements, we propose a model describing the heating mechanism in FeC nanoparticles. Using, for the first time, time-dependent high-frequency hysteresis loop measurements, it is shown that in the samples displaying the larger heating powers, the hysteresis is strongly time dependent. More precisely, the hysteresis area increases by a factor 10 on a timescale of a few tens of seconds. This effect is directly related to the ability of the nanoparticles to form chains under magnetic excitation, which depends on the presence or not of strong dipolar couplings. These differences are due to different ligand concentrations on the surface of the particles. As a result, this study allows the design of a scalable synthesis of nanomaterials displaying a controllable and reproducible SAR.
用高频磁场加热磁性纳米粒子是生物应用(磁热疗)以及多相催化领域的研究热点。本研究表明,为什么具有相似结构和静态磁性的 FeC 纳米粒子显示出截然不同的加热能力(比吸收率从 0 到 2kW/g)。通过结合透射电子显微镜(TEM)、动态光散射(DLS)以及静态和时变高频磁测量的结果,我们提出了一个描述 FeC 纳米粒子加热机制的模型。首次使用时变高频磁滞回线测量表明,在显示较大加热功率的样品中,磁滞回线强烈依赖于时间。更确切地说,磁滞回线面积在几十秒的时间内增加了 10 倍。这种效应与纳米粒子在磁场激发下形成链的能力直接相关,而这又取决于是否存在强偶极子耦合。这些差异是由于粒子表面配体浓度不同造成的。因此,这项研究为可控制和可重复的比吸收率设计可控和可重复的纳米材料的规模化合成提供了指导。
Biochim Biophys Acta Gen Subj. 2016-12-14
Angew Chem Int Ed Engl. 2016-11-22
Biomagn Res Technol. 2008-10-20
Nanomaterials (Basel). 2020-10-23
ACS Nano. 2017-6-21
ACS Appl Mater Interfaces. 2024-12-11
Nanoscale Adv. 2021-1-15
ACS Appl Nano Mater. 2020-7-24
ACS Appl Mater Interfaces. 2020-6-11