Suppr超能文献

临床规模批量生产用于 MRI 的高极化丙烷气体。

Clinical-Scale Batch-Mode Production of Hyperpolarized Propane Gas for MRI.

机构信息

International Tomography Center, SB RAS , 3A Institutskaya St. , Novosibirsk 630090 , Russia.

Novosibirsk State University , 2 Pirogova St. , Novosibirsk 630090 , Russia.

出版信息

Anal Chem. 2019 Apr 2;91(7):4741-4746. doi: 10.1021/acs.analchem.9b00259. Epub 2019 Mar 20.

Abstract

NMR spectroscopy and imaging (MRI) are two of the most important methods to study structure, function, and dynamics from atom to organism scale. NMR approaches often suffer from an insufficient sensitivity, which, however, can be transiently boosted using hyperpolarization techniques. One of these techniques is parahydrogen-induced polarization, which has been used to produce catalyst-free hyperpolarized propane gas with proton polarization that is 3 orders of magnitude greater than equilibrium thermal polarization at a 1.5 T field of a clinical MRI scanner. Here we show that more than 0.3 L of hyperpolarized propane gas can be produced in 2 s. This production rate is more than an order of magnitude greater than that demonstrated previously, and the reported production rate is comparable to that employed for in-human MRI using HP noble gas (e.g., Xe) produced via a spin exchange optical pumping (SEOP) hyperpolarization technique. We show that high polarization values can be retained despite the significant increase in the production rate of hyperpolarized propane. The enhanced signals of produced hyperpolarized propane gas were revealed by stopped-flow MRI visualization at 4.7 T. Achieving this high production rate enables the future use of this compound (already approved for unlimited use in foods by the corresponding regulating agencies, e.g., FDA in the USA, and more broadly as an E944 food additive) as a new inhalable contrast agent for diagnostic detection via MRI.

摘要

NMR 光谱学和成像(MRI)是研究从原子到生物体尺度的结构、功能和动力学的两种最重要的方法。NMR 方法通常受到灵敏度不足的限制,然而,这种灵敏度可以通过使用超极化技术来暂时提高。这些技术之一是 Para 氫诱导极化,它已被用于在临床 MRI 扫描仪 1.5 T 场中产生质子极化比平衡热极化高 3 个数量级的无催化剂超极化丙烷气体。在这里,我们展示可以在 2 秒内产生超过 0.3 升的超极化丙烷气体。这个生产速率比以前展示的要高一个数量级以上,并且报告的生产速率与使用通过自旋交换光学泵浦(SEOP)超极化技术产生的 HP 稀有气体(例如 Xe)进行人体 MRI 时所采用的生产速率相当。我们表明,尽管超极化丙烷的生产速率显著增加,但仍可以保留高极化值。在 4.7 T 下通过停流 MRI 可视化揭示了所产生的超极化丙烷气体的高信号。实现这种高生产速率使该化合物(已经被相应的监管机构(例如美国的 FDA)批准无限期用于食品中,并更广泛地用作 E944 食品添加剂)可作为用于通过 MRI 进行诊断检测的新型可吸入对比剂。

相似文献

1
Clinical-Scale Batch-Mode Production of Hyperpolarized Propane Gas for MRI.
Anal Chem. 2019 Apr 2;91(7):4741-4746. doi: 10.1021/acs.analchem.9b00259. Epub 2019 Mar 20.
2
Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing.
ACS Sens. 2023 Oct 27;8(10):3845-3854. doi: 10.1021/acssensors.3c01369. Epub 2023 Sep 29.
3
Relaxation Dynamics of Nuclear Long-Lived Spin States in Propane and Propane-d Hyperpolarized by Parahydrogen.
J Phys Chem C Nanomater Interfaces. 2019 May 9;123(18):11734-11744. doi: 10.1021/acs.jpcc.9b01538. Epub 2019 Apr 11.
4
Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane.
Chemphyschem. 2018 Oct 19;19(20):2621-2626. doi: 10.1002/cphc.201800690. Epub 2018 Aug 7.
5
Enabling Clinical Technologies for Hyperpolarized Xenon Magnetic Resonance Imaging and Spectroscopy.
Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22126-22147. doi: 10.1002/anie.202015200. Epub 2021 Jun 9.
7
Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.
PLoS One. 2012;7(11):e49927. doi: 10.1371/journal.pone.0049927. Epub 2012 Nov 27.
8
Propane- Heterogeneously Hyperpolarized by Parahydrogen.
J Phys Chem C Nanomater Interfaces. 2014 Dec 4;118(48):28234-28243. doi: 10.1021/jp508719n. Epub 2014 Nov 6.
9
10
Toward Lung Ventilation Imaging Using Hyperpolarized Diethyl Ether Gas Contrast Agent.
Chemistry. 2024 May 2;30(25):e202304071. doi: 10.1002/chem.202304071. Epub 2024 Mar 12.

引用本文的文献

1
Rapid lung ventilation MRI using parahydrogen-induced polarization of propane gas.
Analyst. 2024 Dec 2;149(24):5832-5842. doi: 10.1039/d4an01029a.
2
Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging.
Chem Biomed Imaging. 2024 Jul 25;2(10):698-710. doi: 10.1021/cbmi.4c00041. eCollection 2024 Oct 28.
3
Toward Lung Ventilation Imaging Using Hyperpolarized Diethyl Ether Gas Contrast Agent.
Chemistry. 2024 May 2;30(25):e202304071. doi: 10.1002/chem.202304071. Epub 2024 Mar 12.
4
Pd-based bimetallic catalysts for parahydrogen-induced polarization in heterogeneous hydrogenations.
Magn Reson (Gott). 2021 Apr 8;2(1):93-103. doi: 10.5194/mr-2-93-2021. eCollection 2021.
5
Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing.
ACS Sens. 2023 Oct 27;8(10):3845-3854. doi: 10.1021/acssensors.3c01369. Epub 2023 Sep 29.
6
Spin Hyperpolarization in Modern Magnetic Resonance.
Chem Rev. 2023 Feb 22;123(4):1417-1551. doi: 10.1021/acs.chemrev.2c00534. Epub 2023 Jan 26.
8
Recent advances in the application of parahydrogen in catalysis and biochemistry.
RSC Adv. 2022 Apr 26;12(20):12477-12506. doi: 10.1039/d2ra01346k. eCollection 2022 Apr 22.
9
Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques.
Anal Chem. 2022 Jan 11;94(1):479-502. doi: 10.1021/acs.analchem.1c04863. Epub 2022 Jan 1.
10
Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy.
Anal Chem. 2021 Feb 23;93(7):3594-3601. doi: 10.1021/acs.analchem.0c05129. Epub 2021 Feb 4.

本文引用的文献

1
^{129}Xe-Rb Spin-Exchange Optical Pumping with High Photon Efficiency.
Phys Rev Lett. 2018 Oct 12;121(15):153201. doi: 10.1103/PhysRevLett.121.153201.
2
Single-Site Heterogeneous Catalysts: From Synthesis to NMR Signal Enhancement.
Chemistry. 2019 Jan 28;25(6):1420-1431. doi: 10.1002/chem.201803515. Epub 2018 Nov 20.
3
Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane.
Chemphyschem. 2018 Oct 19;19(20):2621-2626. doi: 10.1002/cphc.201800690. Epub 2018 Aug 7.
4
Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques.
Chem Asian J. 2018 May 23. doi: 10.1002/asia.201800551.
5
Parahydrogen-Based Hyperpolarization for Biomedicine.
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11140-11162. doi: 10.1002/anie.201711842. Epub 2018 Aug 1.
6
Extending the Lifetime of Hyperpolarized Propane Gas through Reversible Dissolution.
J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4481-4487. doi: 10.1021/acs.jpcc.7b00509. Epub 2017 Feb 7.
7
Silica-Encapsulated Pt-Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen-Induced Polarization of Gases and Liquids.
Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3925-3929. doi: 10.1002/anie.201701314. Epub 2017 Mar 9.
8
9
NMR Hyperpolarization Techniques of Gases.
Chemistry. 2017 Jan 18;23(4):725-751. doi: 10.1002/chem.201603884. Epub 2016 Dec 5.
10
Long-lived states to sustain SABRE hyperpolarised magnetisation.
Phys Chem Chem Phys. 2016 Sep 14;18(36):24905-24911. doi: 10.1039/c6cp02844f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验