Department of Chemistry, University of York, York YO10 5DD, U.K.
Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
J Am Chem Soc. 2023 Feb 1;145(4):2619-2629. doi: 10.1021/jacs.2c12642. Epub 2023 Jan 23.
The heterogeneous solid-gas reactions of crystals of [Rh(L)(propene)][BAr] (, L = BuPCHCHPBu) with H and propene, 1-butene, propyne, or 1-butyne are explored by gas-phase nuclear magnetic resonance (NMR) spectroscopy under batch conditions at 25 °C. The temporal evolution of the resulting parahydrogen-induced polarization (PHIP) effects measures catalytic flux and thus interrogates the efficiency of catalytic pairwise -H transfer, speciation changes in the crystalline catalyst at the molecular level, and allows for high-quality single-scan H, C NMR gas-phase spectra for the products to be obtained, as well as 2D-measurements. Complex reacts with H to form dimeric [Rh(L)(H)(μ-H)][BAr] (), as probed using EXAFS; meanwhile, a single-crystal of equilibrates NMR silent -H with its NMR active ortho isomer, contemporaneously converting into , and and each convert -H into -H at different rates. Hydrogenation of propene using and -H results in very high initial polarization levels in propane (>85%). Strong PHIP was also detected in the hydrogenation products of 1-butene, propyne, and 1-butyne. With propyne, a competing cyclotrimerization deactivation process occurs to afford [Rh(BuPCHCHPBu)(1,3,4-MeCH)][BAr], while with 1-butyne, rapid isomerization of 1-butyne occurs to give a butadiene complex, which then reacts with H more slowly to form catalytically active . Surprisingly, the high PHIP hydrogenation efficiencies allow hyperpolarization effects to be seen when H is taken directly from a regular cylinder at 25 °C. Finally, changing the chelating phosphine to CyPCHCHPCy results in initial high polarization efficiencies for propene hydrogenation, but rapid quenching of the catalyst competes to form the zwitterion [Rh(CyPCHCHPCy){η-(CF)(CH)}BAr].
[Rh(L)(propene)][BAr](L = BuPCHCHPBu)晶体与 H 和丙烯、1-丁烯、丙炔或 1-丁炔的异质固-气反应,在 25°C 下通过批处理条件下的气相核磁共振(NMR)光谱进行了探索。所得的 Para 氢诱导极化(PHIP)效应的时间演化测量了催化通量,从而检验了催化成对 -H 转移的效率、结晶催化剂在分子水平上的形态变化,并允许获得高质量的单扫描 H、C NMR 气相产物谱,以及 2D 测量。EXAFS 探测到,复合物与 H 反应生成二聚体[Rh(L)(H)(μ-H)][BAr]();与此同时,单晶[Rh(L)(propene)][BAr]在 NMR 活跃的邻位异构体中平衡 NMR 无声 -H,同时转化为[Rh(L)(H)(μ-H)][BAr]和[Rh(L)(propene)][BAr],和 以不同的速率将 -H 转化为 -H。使用[Rh(L)(propene)][BAr]和 -H 对丙烯进行加氢反应,导致丙烷中的初始极化水平非常高(>85%)。在 1-丁烯、丙炔和 1-丁炔的加氢产物中也检测到强烈的 PHIP。对于丙炔,发生竞争的环三聚失活过程,得到[Rh(BuPCHCHPBu)(1,3,4-MeCH)][BAr],而对于 1-丁炔,1-丁炔迅速异构化为丁二烯配合物,然后更缓慢地与 H 反应形成催化活性的[Rh(L)(propene)][BAr]。令人惊讶的是,高 PHIP 加氢效率允许在 25°C 时直接从常规圆柱中提取 H 时看到超极化效应。最后,将螯合膦改为 CyPCHCHPCy 会导致丙烯加氢的初始高极化效率,但催化剂的快速猝灭会竞争形成两性离子[Rh(CyPCHCHPCy){η-(CF)(CH)}BAr]。