Suppr超能文献

遗传单神经元解剖揭示了皮质轴突-轴突细胞的精细粒度。

Genetic Single Neuron Anatomy Reveals Fine Granularity of Cortical Axo-Axonic Cells.

机构信息

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA.

出版信息

Cell Rep. 2019 Mar 12;26(11):3145-3159.e5. doi: 10.1016/j.celrep.2019.02.040.

Abstract

Parsing diverse nerve cells into biological types is necessary for understanding neural circuit organization. Morphology is an intuitive criterion for neuronal classification and a proxy of connectivity, but morphological diversity and variability often preclude resolving the granularity of neuron types. Combining genetic labeling with high-resolution, large-volume light microscopy, we established a single neuron anatomy platform that resolves, registers, and quantifies complete neuron morphologies in the mouse brain. We discovered that cortical axo-axonic cells (AACs), a cardinal GABAergic interneuron type that controls pyramidal neuron (PyN) spiking at axon initial segments, consist of multiple subtypes distinguished by highly laminar-specific soma position and dendritic and axonal arborization patterns. Whereas the laminar arrangements of AAC dendrites reflect differential recruitment by input streams, the laminar distribution and local geometry of AAC axons enable differential innervation of PyN ensembles. This platform will facilitate genetically targeted, high-resolution, and scalable single neuron anatomy in the mouse brain.

摘要

将不同的神经细胞解析为生物类型对于理解神经回路组织是必要的。形态是神经元分类的直观标准,也是连接性的代表,但形态的多样性和可变性常常妨碍解析神经元类型的粒度。我们结合遗传标记和高分辨率、大容量的光显微镜,建立了一个单神经元解剖平台,该平台可以解析、注册和量化小鼠大脑中的完整神经元形态。我们发现,皮层轴突-轴突细胞(AAC)是一种主要的 GABA 能中间神经元类型,它控制着轴突起始段的锥体神经元(PyN)的放电,由多个亚型组成,这些亚型的区别在于具有高度层特异性的胞体位置以及树突和轴突分支模式。AAC 树突的层排列反映了不同输入流的差异招募,而 AAC 轴突的层分布和局部几何形状则可以实现对 PyN 集合的不同神经支配。这个平台将有助于在小鼠大脑中进行基于遗传靶向的高分辨率和可扩展的单神经元解剖。

相似文献

1
Genetic Single Neuron Anatomy Reveals Fine Granularity of Cortical Axo-Axonic Cells.
Cell Rep. 2019 Mar 12;26(11):3145-3159.e5. doi: 10.1016/j.celrep.2019.02.040.
3
The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey.
Neuroscience. 1982;7(11):2577-607. doi: 10.1016/0306-4522(82)90086-0.
4
Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM.
Neuron. 2019 Apr 17;102(2):358-372.e9. doi: 10.1016/j.neuron.2019.02.009. Epub 2019 Mar 4.
8
Genetic labeling of axo-axonic cells in the basolateral amygdala.
Neurosci Res. 2022 May;178:33-40. doi: 10.1016/j.neures.2022.02.002. Epub 2022 Feb 18.
10
Dense and overlapping innervation of pyramidal neurons by chandelier cells.
J Neurosci. 2013 Jan 30;33(5):1907-14. doi: 10.1523/JNEUROSCI.4049-12.2013.

引用本文的文献

1
NEURD offers automated proofreading and feature extraction for connectomics.
Nature. 2025 Apr;640(8058):487-496. doi: 10.1038/s41586-025-08660-5. Epub 2025 Apr 9.
2
Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex.
bioRxiv. 2025 May 17:2025.02.26.640383. doi: 10.1101/2025.02.26.640383.
4
Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity.
Front Cell Neurosci. 2024 Jul 24;18:1414955. doi: 10.3389/fncel.2024.1414955. eCollection 2024.
5
Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network.
Neurosci Bull. 2024 Nov;40(11):1774-1788. doi: 10.1007/s12264-024-01266-3. Epub 2024 Jul 30.
7
Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex.
Science. 2023 Oct 13;382(6667):eadf6484. doi: 10.1126/science.adf6484.
8
Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex.
J Neurosci. 2023 Oct 18;43(42):6972-6987. doi: 10.1523/JNEUROSCI.0432-23.2023. Epub 2023 Aug 28.
9
NRRS: a re-tracing strategy to refine neuron reconstruction.
Bioinform Adv. 2023 May 18;3(1):vbad054. doi: 10.1093/bioadv/vbad054. eCollection 2023.
10
DSCAM gene triplication causes excessive GABAergic synapses in the neocortex in Down syndrome mouse models.
PLoS Biol. 2023 Apr 20;21(4):e3002078. doi: 10.1371/journal.pbio.3002078. eCollection 2023 Apr.

本文引用的文献

1
Shared and distinct transcriptomic cell types across neocortical areas.
Nature. 2018 Nov;563(7729):72-78. doi: 10.1038/s41586-018-0654-5. Epub 2018 Oct 31.
2
Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.
Cell. 2017 Oct 19;171(3):522-539.e20. doi: 10.1016/j.cell.2017.08.032. Epub 2017 Sep 21.
3
Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells.
Nat Neurosci. 2017 Oct;20(10):1377-1383. doi: 10.1038/nn.4624. Epub 2017 Aug 21.
4
TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.
Front Neural Circuits. 2017 Jul 31;11:51. doi: 10.3389/fncir.2017.00051. eCollection 2017.
5
Metrics for comparing neuronal tree shapes based on persistent homology.
PLoS One. 2017 Aug 15;12(8):e0182184. doi: 10.1371/journal.pone.0182184. eCollection 2017.
6
Extended Interneuronal Network of the Dentate Gyrus.
Cell Rep. 2017 Aug 8;20(6):1262-1268. doi: 10.1016/j.celrep.2017.07.042.
7
Neuronal cell-type classification: challenges, opportunities and the path forward.
Nat Rev Neurosci. 2017 Sep;18(9):530-546. doi: 10.1038/nrn.2017.85. Epub 2017 Aug 3.
8
Automatic tracing of ultra-volumes of neuronal images.
Nat Methods. 2017 Mar 31;14(4):332-333. doi: 10.1038/nmeth.4233.
9
Embedding and Chemical Reactivation of Green Fluorescent Protein in the Whole Mouse Brain for Optical Micro-Imaging.
Front Neurosci. 2017 Mar 14;11:121. doi: 10.3389/fnins.2017.00121. eCollection 2017.
10
Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans.
Curr Biol. 2016 Nov 21;26(22):R1197-R1203. doi: 10.1016/j.cub.2016.10.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验