Celii Brendan, Papadopoulos Stelios, Ding Zhuokun, Fahey Paul G, Wang Eric, Papadopoulos Christos, Kunin Alexander B, Patel Saumil, Bae J Alexander, Bodor Agnes L, Brittain Derrick, Buchanan JoAnn, Bumbarger Daniel J, Castro Manuel A, Cobos Erick, Dorkenwald Sven, Elabbady Leila, Halageri Akhilesh, Jia Zhen, Jordan Chris, Kapner Dan, Kemnitz Nico, Kinn Sam, Lee Kisuk, Li Kai, Lu Ran, Macrina Thomas, Mahalingam Gayathri, Mitchell Eric, Mondal Shanka Subhra, Mu Shang, Nehoran Barak, Popovych Sergiy, Schneider-Mizell Casey M, Silversmith William, Takeno Marc, Torres Russel, Turner Nicholas L, Wong William, Wu Jingpeng, Yu Szi-Chieh, Yin Wenjing, Xenes Daniel, Kitchell Lindsey M, Rivlin Patricia K, Rose Victoria A, Bishop Caitlyn A, Wester Brock, Froudarakis Emmanouil, Walker Edgar Y, Sinz Fabian, Seung H Sebastian, Collman Forrest, da Costa Nuno Maçarico, Reid R Clay, Pitkow Xaq, Tolias Andreas S, Reimer Jacob
Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
Nature. 2025 Apr;640(8058):487-496. doi: 10.1038/s41586-025-08660-5. Epub 2025 Apr 9.
We are in the era of millimetre-scale electron microscopy volumes collected at nanometre resolution. Dense reconstruction of cellular compartments in these electron microscopy volumes has been enabled by recent advances in machine learning. Automated segmentation methods produce exceptionally accurate reconstructions of cells, but post hoc proofreading is still required to generate large connectomes that are free of merge and split errors. The elaborate 3D meshes of neurons in these volumes contain detailed morphological information at multiple scales, from the diameter, shape and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting these features can require substantial effort to piece together existing tools into custom workflows. Here, building on existing open source software for mesh manipulation, we present Neural Decomposition (NEURD), a software package that decomposes meshed neurons into compact and extensively annotated graph representations. With these feature-rich graphs, we automate a variety of tasks such as state-of-the-art automated proofreading of merge errors, cell classification, spine detection, axonal-dendritic proximities and other annotations. These features enable many downstream analyses of neural morphology and connectivity, making these massive and complex datasets more accessible to neuroscience researchers.
我们正处于以纳米分辨率收集毫米级电子显微镜图像数据集的时代。机器学习的最新进展使得对这些电子显微镜图像数据集中的细胞区室进行密集重建成为可能。自动化分割方法能够生成极其精确的细胞重建结果,但仍需要进行事后校对,以生成没有合并和分割错误的大型连接组。这些数据集中神经元精细的三维网格包含了多个尺度的详细形态信息,从轴突和树突的直径、形状和分支模式,到树突棘的精细结构。然而,提取这些特征可能需要花费大量精力,将现有工具拼凑成定制的工作流程。在此,基于现有的用于网格操作的开源软件,我们推出了神经分解软件包(NEURD),该软件包可将网格化的神经元分解为紧凑且有大量注释的图形表示。借助这些富含特征的图形,我们可以自动执行各种任务,如最先进的合并错误自动校对、细胞分类、棘突检测、轴突 - 树突邻近关系以及其他注释。这些功能使得对神经形态和连接性进行许多下游分析成为可能,让神经科学研究人员能够更方便地访问这些海量且复杂的数据集。