Suppr超能文献

一种用于在大型医疗服务系统中识别有影响力的供应商的基于网络且保护隐私的方法。

A network-based method with privacy-preserving for identifying influential providers in large healthcare service systems.

作者信息

Qi Xiaoyu, Mei Gang, Cuomo Salvatore, Xiao Lei

机构信息

School of Engineering and Technology, China University of Geosciences (Beijing), China.

Department of Mathematics and Applications, University of Naples Federico II, Italy.

出版信息

Future Gener Comput Syst. 2020 Aug;109:293-305. doi: 10.1016/j.future.2020.04.004. Epub 2020 Apr 6.

Abstract

In data science, networks provide a useful abstraction of the structure of many complex systems, ranging from social systems and computer networks to biological networks and physical systems. Healthcare service systems are one of the main social systems that can also be understood using network-based approaches, for example, to identify and evaluate influential providers. In this paper, we propose a network-based method with privacy-preserving for identifying influential providers in large healthcare service systems. First, the provider-interacting network is constructed by employing publicly available information on locations and types of healthcare services of providers. Second, the ranking of nodes in the generated provider-interacting network is conducted in parallel on the basis of four nodal influence metrics. Third, the impact of the top-ranked influential nodes in the provider-interacting network is evaluated using three indicators. Compared with other research work based on patient-sharing networks, in this paper, the provider-interacting network of healthcare service providers can be roughly created according to the locations and the publicly available types of healthcare services, without the need for personally private electronic medical claims, thus protecting the privacy of patients. The proposed method is demonstrated by employing Physician and Other Supplier Data CY 2017, and can be applied to other similar datasets to help make decisions for the optimization of healthcare resources in the response to public health emergencies.

摘要

在数据科学中,网络为许多复杂系统的结构提供了一种有用的抽象,涵盖从社会系统、计算机网络到生物网络和物理系统等领域。医疗服务系统是主要的社会系统之一,也可以使用基于网络的方法来理解,例如,用于识别和评估有影响力的医疗机构。在本文中,我们提出一种基于网络且能保护隐私的方法,用于在大型医疗服务系统中识别有影响力的医疗机构。首先,通过利用医疗机构位置和医疗服务类型的公开可用信息构建医疗机构交互网络。其次,基于四个节点影响力指标对生成的医疗机构交互网络中的节点进行并行排名。第三,使用三个指标评估医疗机构交互网络中排名靠前的有影响力节点的影响。与其他基于患者共享网络的研究工作相比,本文中医疗服务机构的交互网络可以根据医疗机构的位置和公开可用的医疗服务类型大致创建,无需个人私密的电子医疗索赔信息,从而保护了患者隐私。通过使用2017年医生及其他供应商数据对所提出的方法进行了验证,并且该方法可应用于其他类似数据集,以帮助在应对突发公共卫生事件时做出优化医疗资源的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff7e/7157485/1ddbb6b97065/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验