Suppr超能文献

囊泡内信息传递——在媒介-宿主界面的跨领域交流。

Message in a vesicle - trans-kingdom intercommunication at the vector-host interface.

机构信息

Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.

出版信息

J Cell Sci. 2019 Mar 18;132(6):jcs224212. doi: 10.1242/jcs.224212.

Abstract

Vector-borne diseases cause over 700,000 deaths annually and represent 17% of all infectious illnesses worldwide. This public health menace highlights the importance of understanding how arthropod vectors, microbes and their mammalian hosts interact. Currently, an emphasis of the scientific enterprise is at the vector-host interface where human pathogens are acquired and transmitted. At this spatial junction, arthropod effector molecules are secreted, enabling microbial pathogenesis and disease. Extracellular vesicles manipulate signaling networks by carrying proteins, lipids, carbohydrates and regulatory nucleic acids. Therefore, they are well positioned to aid in cell-to-cell communication and mediate molecular interactions. This Review briefly discusses exosome and microvesicle biogenesis, their cargo, and the role that nanovesicles play during pathogen spread, host colonization and disease pathogenesis. We then focus on the role of extracellular vesicles in dictating microbial pathogenesis and host immunity during transmission of vector-borne pathogens.

摘要

虫媒传染病每年导致超过 70 万人死亡,占全球所有传染病的 17%。这种公共卫生威胁突显了了解节肢动物媒介、微生物及其哺乳动物宿主如何相互作用的重要性。目前,科学研究的重点是在节肢动物-宿主界面,人类病原体在此处获得和传播。在这个空间交界处,节肢动物效应分子被分泌出来,使微生物能够引发疾病。细胞外囊泡通过携带蛋白质、脂质、碳水化合物和调节性核酸来操纵信号网络。因此,它们非常适合辅助细胞间通讯和介导分子相互作用。本综述简要讨论了外泌体和微泡的生物发生、它们的货物以及纳米囊泡在病原体传播、宿主定植和发病机制过程中所起的作用。然后,我们将重点讨论细胞外囊泡在决定虫媒病原体传播过程中的微生物发病机制和宿主免疫中的作用。

相似文献

1
Message in a vesicle - trans-kingdom intercommunication at the vector-host interface.
J Cell Sci. 2019 Mar 18;132(6):jcs224212. doi: 10.1242/jcs.224212.
2
Parasitic diseases in humans transmitted by vectors.
Ann Parasitol. 2015;61(3):137-57. doi: 10.17420/ap6103.01.
3
Arthropod exosomes as bubbles with message(s) to transmit vector-borne diseases.
Curr Opin Insect Sci. 2020 Aug;40:39-47. doi: 10.1016/j.cois.2020.05.017. Epub 2020 Jun 2.
4
Understanding pathogen survival and transmission by arthropod vectors to prevent human disease.
Science. 2022 Sep 30;377(6614):eabc2757. doi: 10.1126/science.abc2757.
5
Lipid hijacking: a unifying theme in vector-borne diseases.
Elife. 2020 Oct 29;9:e61675. doi: 10.7554/eLife.61675.
6
Exosome-Mediated Pathogen Transmission by Arthropod Vectors.
Trends Parasitol. 2018 Jul;34(7):549-552. doi: 10.1016/j.pt.2018.04.001. Epub 2018 Apr 24.
7
Host-parasite interactions in vector-borne protozoan infections.
Eur J Protistol. 2020 Oct;76:125741. doi: 10.1016/j.ejop.2020.125741. Epub 2020 Sep 18.
8
Feeding behaviour of pathogen-infected vectors.
Parasitology. 1986 Jun;92 ( Pt 3):721-36. doi: 10.1017/s0031182000065574.
10
Manipulation of medically important insect vectors by their parasites.
Annu Rev Entomol. 2003;48:141-61. doi: 10.1146/annurev.ento.48.091801.112722. Epub 2002 Jun 4.

引用本文的文献

1
Characterization of size distribution and markers for mosquito extracellular vesicles.
Front Cell Dev Biol. 2025 Apr 11;13:1497795. doi: 10.3389/fcell.2025.1497795. eCollection 2025.
2
A glimpse into the world of microRNAs and their putative roles in hard ticks.
Front Cell Dev Biol. 2024 Sep 23;12:1460705. doi: 10.3389/fcell.2024.1460705. eCollection 2024.
3
B cell extracellular vesicles contain monomeric IgM that binds antigen and enters target cells.
iScience. 2023 Aug 3;26(9):107526. doi: 10.1016/j.isci.2023.107526. eCollection 2023 Sep 15.
4
Tick extracellular vesicles in host skin immunity and pathogen transmission.
Trends Parasitol. 2023 Oct;39(10):873-885. doi: 10.1016/j.pt.2023.07.009. Epub 2023 Aug 16.
5
ROS are evolutionary conserved cell-to-cell stress signals.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2305496120. doi: 10.1073/pnas.2305496120. Epub 2023 Jul 26.
7
Malaria parasites release vesicle subpopulations with signatures of different destinations.
EMBO Rep. 2022 Jul 5;23(7):e54755. doi: 10.15252/embr.202254755. Epub 2022 Jun 1.
8
Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle.
Vet Sci. 2022 May 21;9(5):241. doi: 10.3390/vetsci9050241.
9
Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions.
Front Cell Infect Microbiol. 2022 Mar 16;12:809052. doi: 10.3389/fcimb.2022.809052. eCollection 2022.
10
Ticks: More Than Just a Pathogen Delivery Service.
Front Cell Infect Microbiol. 2021 Sep 1;11:739419. doi: 10.3389/fcimb.2021.739419. eCollection 2021.

本文引用的文献

2
Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer.
J Cell Biochem. 2019 Feb;120(2):2671-2686. doi: 10.1002/jcb.27582. Epub 2018 Sep 23.
3
Salivary exosomes as potential biomarkers in cancer.
Oral Oncol. 2018 Sep;84:31-40. doi: 10.1016/j.oraloncology.2018.07.001. Epub 2018 Jul 13.
4
Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6604-E6613. doi: 10.1073/pnas.1720125115. Epub 2018 Jun 26.
5
Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice.
Front Immunol. 2018 Apr 30;9:850. doi: 10.3389/fimmu.2018.00850. eCollection 2018.
7
Exosome-Mediated Pathogen Transmission by Arthropod Vectors.
Trends Parasitol. 2018 Jul;34(7):549-552. doi: 10.1016/j.pt.2018.04.001. Epub 2018 Apr 24.
9
Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin.
PLoS Negl Trop Dis. 2018 Apr 16;12(4):e0006438. doi: 10.1371/journal.pntd.0006438. eCollection 2018 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验