Suppr超能文献

从想法到数据:迈向药物发现的新范式

Idea2Data: Toward a New Paradigm for Drug Discovery.

作者信息

Nicolaou Christos A, Humblet Christine, Hu Hong, Martin Eva M, Dorsey Frank C, Castle Thomas M, Burton Keith Ian, Hu Haitao, Hendle Jorg, Hickey Michael J, Duerksen Joel, Wang Jibo, Erickson Jon A

机构信息

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States.

出版信息

ACS Med Chem Lett. 2019 Feb 4;10(3):278-286. doi: 10.1021/acsmedchemlett.8b00488. eCollection 2019 Mar 14.

Abstract

Increasing the success rate and throughput of drug discovery will require efficiency improvements throughout the process that is currently used in the pharmaceutical community, including the crucial step of identifying hit compounds to act as drivers for subsequent optimization. Hit identification can be carried out through large compound collection screening and often involves the generation and testing of many hypotheses based on available knowledge. In practice, hypothesis generation can involve the selection of promising chemical structures from compound collections using predictive models built from previous screening/assay results. Available physical collections, typically used during hit identification, are of the order of 10 compounds but represent only a small fraction of the small molecule drug-like chemical space. In an effort to survey a larger portion of chemical space and eliminate inefficiencies during hit identification, we introduce a new process, termed Idea2Data (I2D) that tightly integrates computational and experimental components of the drug discovery process. I2D provides the ability to connect a vast virtual collection of compounds readily synthesizable on automated synthesis systems with computational predictive models for the identification of promising structures. This new paradigm enables researchers to process billions of virtual molecules and select structures that can be prepared on automated systems and made available for biological testing, allowing for timely hypothesis testing and follow-up. Since its introduction, I2D has positively impacted several portfolio efforts through identification of new chemical scaffolds and functionalization of existing scaffolds. In this Innovations paper, we describe the I2D process and present an application for the discovery of new ULK inhibitors.

摘要

提高药物发现的成功率和通量将需要在制药界目前使用的整个过程中提高效率,包括识别命中化合物这一关键步骤,这些命中化合物将作为后续优化的驱动因素。命中化合物的识别可以通过大型化合物库筛选来进行,并且通常涉及基于现有知识生成和测试许多假设。在实践中,假设生成可能涉及使用根据先前筛选/测定结果建立的预测模型从化合物库中选择有前景的化学结构。在命中化合物识别过程中通常使用的现有实体化合物库大约有10种化合物,但仅代表类药物小分子化学空间的一小部分。为了探索更大一部分化学空间并消除命中化合物识别过程中的低效率,我们引入了一种新的流程,称为Idea2Data(I2D),它紧密集成了药物发现过程的计算和实验组件。I2D能够将可在自动化合成系统上轻松合成的大量虚拟化合物库与用于识别有前景结构的计算预测模型相连接。这种新的模式使研究人员能够处理数十亿个虚拟分子,并选择可以在自动化系统上制备并用于生物学测试的结构,从而实现及时的假设测试和跟进。自推出以来,I2D通过识别新的化学骨架和对现有骨架进行功能化,对多项项目工作产生了积极影响。在这篇创新论文中,我们描述了I2D流程,并展示了一个发现新型ULK抑制剂的应用实例。

相似文献

1
Idea2Data: Toward a New Paradigm for Drug Discovery.从想法到数据:迈向药物发现的新范式
ACS Med Chem Lett. 2019 Feb 4;10(3):278-286. doi: 10.1021/acsmedchemlett.8b00488. eCollection 2019 Mar 14.
3
Bioactivity-guided navigation of chemical space.基于生物活性的化学空间导航。
Acc Chem Res. 2010 Aug 17;43(8):1103-14. doi: 10.1021/ar100014h.
7
Context Aware Data-Driven Retrosynthetic Analysis.上下文感知的数据驱动回溯分析。
J Chem Inf Model. 2020 Jun 22;60(6):2728-2738. doi: 10.1021/acs.jcim.9b01141. Epub 2020 Apr 24.

引用本文的文献

3
Accelerating Drug Discovery: Synthesis of Complex Chemotypes via Multicomponent Reactions.加速药物发现:通过多组分反应合成复杂化学型
ACS Med Chem Lett. 2023 Mar 8;14(4):376-385. doi: 10.1021/acsmedchemlett.3c00012. eCollection 2023 Apr 13.

本文引用的文献

1
Nanoscale synthesis and affinity ranking.纳米级合成与亲和排序。
Nature. 2018 May;557(7704):228-232. doi: 10.1038/s41586-018-0056-8. Epub 2018 Apr 23.
3
Integrated Platform for Expedited Synthesis-Purification-Testing of Small Molecule Libraries.小分子文库快速合成-纯化-测试集成平台
ACS Med Chem Lett. 2017 Mar 28;8(4):461-465. doi: 10.1021/acsmedchemlett.7b00054. eCollection 2017 Apr 13.
4
DNA-encoded chemistry: enabling the deeper sampling of chemical space.DNA 编码化学:实现更深入的化学空间采样。
Nat Rev Drug Discov. 2017 Feb;16(2):131-147. doi: 10.1038/nrd.2016.213. Epub 2016 Dec 9.
7
Discovery of selective RIO2 kinase small molecule ligand.选择性RIO2激酶小分子配体的发现。
Biochim Biophys Acta. 2015 Oct;1854(10 Pt B):1630-6. doi: 10.1016/j.bbapap.2015.04.006. Epub 2015 Apr 17.
10
The ChEMBL bioactivity database: an update.《ChEMBL 生物活性数据库更新》
Nucleic Acids Res. 2014 Jan;42(Database issue):D1083-90. doi: 10.1093/nar/gkt1031. Epub 2013 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验