Robles-Linares José A, Ramírez-Cedillo Erick, Siller Hector R, Rodríguez Ciro A, Martínez-López J Israel
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64700, Mexico.
Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, N.L. 66629, Mexico.
Materials (Basel). 2019 Mar 19;12(6):913. doi: 10.3390/ma12060913.
In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.
在这项工作中,我们提出了一种新颖的算法,用于生成皮质骨微观结构的计算机模拟仿生模型,以通过增材制造来制造仿生骨。该软件为医生或生物医学工程师提供了一个工具,用于开发包含微观结构固有复杂性的皮质骨模型。通过对热固性聚合物树脂进行数字光处理(DLP)实验性地评估了所生产的虚拟原型与天然骨组织的对应关系,以重建健康和骨质疏松骨组织的微观结构。所提出的工具已成功实施,以基于骨单位密度、黏合线厚度以及哈弗斯管和福尔克曼管来开发皮质骨结构,从而产生与文献报道的这些类型组织的值相匹配的用户指定骨孔隙率。使用聚焦离子束扫描电子显微镜(SEM/FIB)和计算机断层扫描(CT)对标本进行表征,结果表明,对于放大版本的组织,复杂虚拟原型的可制造性是可能的。基于骨单位以及哈弗斯管和福尔克曼管的密度、倾斜度和尺寸范围进行建模,使得能够开发出与健康和骨质疏松骨模型相匹配的动态计算机模拟孔隙率(13.37⁻21.49%)。设计的孔隙率与制造评估结果(5.79⁻16.16%)的对应关系表明,所引入的方法是朝着开发更精细、更逼真的多孔结构(如皮质骨)迈出的一步。需要进一步研究来验证所提出的真实骨组织方法模型,并作为合成骨的患者特异性定制工具。