Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA.
Hunan Key Laboratory of 2D Materials, School of Physics and Electronics, Hunan University, Changsha, China.
Nature. 2019 Mar;567(7748):323-333. doi: 10.1038/s41586-019-1013-x. Epub 2019 Mar 20.
Material integration strategies, such as epitaxial growth, usually involve strong chemical bonds and are typically limited to materials with strict structure matching and processing compatibility. Van der Waals integration, in which pre-fabricated building blocks are physically assembled together through weak van der Waals interactions, offers an alternative bond-free integration strategy without lattice and processing limitations, as exemplified by two-dimensional van der Waals heterostructures. Here we review the development, challenges and opportunities of this emerging approach, generalizing it for flexible integration of diverse material systems beyond two dimensions, and discuss its potential for creating artificial heterostructures or superlattices beyond the reach of existing materials.
材料集成策略,如外延生长,通常涉及强化学键,并且通常仅限于具有严格结构匹配和加工兼容性的材料。范德华集成,其中预制构建块通过弱范德华相互作用物理组装在一起,提供了一种无键合的替代集成策略,没有晶格和加工限制,二维范德华异质结构就是一个例子。在这里,我们回顾了这一新兴方法的发展、挑战和机遇,将其推广到超越二维的各种材料系统的柔性集成,并讨论了其在创造超越现有材料范围的人工异质结构或超晶格方面的潜力。