Suppr超能文献

用于高效并发推理与学习的突触电阻器。

Synaptic Resistors for Concurrent Inference and Learning with High Energy Efficiency.

作者信息

Danesh Cameron D, Shaffer Christopher M, Nathan Dhruva, Shenoy Rahul, Tudor Andrew, Tadayon Macan, Lin Yvette, Chen Yong

机构信息

Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.

出版信息

Adv Mater. 2019 May;31(18):e1808032. doi: 10.1002/adma.201808032. Epub 2019 Mar 25.

Abstract

The fastest supercomputer, Summit, has a speed comparable to the human brain, but is much less energy-efficient (≈10 FLOPS W , floating point operations per second per watt) than the brain (≈10 FLOPS W ). The brain processes and learns from "big data" concurrently via trillions of synapses in parallel analog mode. By contrast, computers execute algorithms on physically separated logic and memory transistors in serial digital mode, which fundamentally restrains computers from handling "big data" efficiently. The existing electronic devices can perform inference with high speeds and energy efficiencies, but they still lack the synaptic functions to facilitate concurrent convolutional inference and correlative learning efficiently like the brain. In this work, synaptic resistors are reported to emulate the analog convolutional signal processing, correlative learning, and nonvolatile memory functions of synapses. By circumventing the fundamental limitations of computers, a synaptic resistor circuit performs speech inference and learning concurrently in parallel analog mode with an energy efficiency of ≈1.6 × 10 FLOPS W , which is about seven orders of magnitudes higher than that of the Summit supercomputer. Scaled-up synstor circuits could circumvent the fundamental limitations in computers, and facilitate real-time inference and learning from "big data" with high efficiency and speed in intelligent systems.

摘要

最快的超级计算机“顶点”(Summit)速度与人脑相当,但能源效率(约10次浮点运算/瓦,即每秒每瓦的浮点运算次数)远低于大脑(约10次浮点运算/瓦)。大脑通过数万亿个突触以并行模拟模式同时处理和学习“大数据”。相比之下,计算机以串行数字模式在物理上分离的逻辑和存储晶体管上执行算法,这从根本上限制了计算机高效处理“大数据”的能力。现有的电子设备能够以高速和高能效进行推理,但它们仍然缺乏像大脑那样有效促进并行卷积推理和相关学习的突触功能。在这项工作中,据报道突触电阻器可模拟突触的模拟卷积信号处理、相关学习和非易失性存储功能。通过规避计算机的基本限制,一种突触电阻器电路以并行模拟模式同时执行语音推理和学习,能源效率约为1.6×10次浮点运算/瓦,比“顶点”超级计算机高出约七个数量级。扩大规模的突触存储电路可以规避计算机的基本限制,并在智能系统中高效、快速地促进从“大数据”进行实时推理和学习。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验