Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States.
J Am Chem Soc. 2019 Apr 17;141(15):6204-6212. doi: 10.1021/jacs.8b12954. Epub 2019 Apr 8.
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into a protein is an emerging technology with tremendous potential. It relies on mutually orthogonal engineered aminoacyl-tRNA synthetase/tRNA pairs that suppress different nonsense/frameshift codons. So far, up to two distinct ncAAs have been incorporated into proteins expressed in E. coli, using archaea-derived tyrosyl and pyrrolysyl pairs. Here we report that the E. coli derived tryptophanyl pair can be combined with the archaeal tyrosyl or the pyrrolysyl pair in ATMW1 E. coli to incorporate two different ncAAs into one protein with high fidelity and efficiency. By combining all three orthogonal pairs, we further demonstrate simultaneous site-specific incorporation of three different ncAAs into one protein. To use this technology for chemoselectively labeling proteins with multiple distinct entities at predefined sites, we also sought to identify different bioconjugation handles that can be coincorporated into proteins as ncAA-side chains and subsequently functionalized through mutually compatible labeling chemistries. To this end, we show that the recently developed chemoselective rapid azo-coupling reaction (CRACR) directed to 5-hydroxytryptophan (5HTP) is compatible with strain-promoted azide-alkyne cycloaddition (SPAAC) targeted to p-azidophenylalanine (pAzF) and strain-promoted inverse electron-demand Diels-Alder cycloaddition (SPIEDAC) targeted to cyclopropene-lysine (CpK) for rapid, catalyst-free protein labeling at multiple sites. Combining these mutually orthogonal nonsense suppression systems and the mutually compatible bioconjugation handles they incorporate, we demonstrate site-specific labeling of recombinantly expressed proteins at up to three distinct sites.
在蛋白质中定点掺入多个不同的非天然氨基酸(ncAAs)是一项具有巨大潜力的新兴技术。它依赖于相互正交的工程化氨酰-tRNA 合成酶/tRNA 对,这些对可以抑制不同的无义/移码密码子。到目前为止,已经使用源自古菌的酪氨酸和吡咯赖氨酸对,在大肠杆菌中表达的蛋白质中掺入了多达两种不同的 ncAAs。在这里,我们报告说,大肠杆菌衍生的色氨酰对可以与古菌的酪氨酸或吡咯赖氨酸对在 ATMW1 大肠杆菌中组合使用,以高保真度和高效率将两种不同的 ncAAs 掺入到一种蛋白质中。通过组合所有三个正交对,我们进一步证明了可以同时将三种不同的 ncAAs 定点掺入到一种蛋白质中。为了使用这项技术在预先定义的位点上用多个不同的实体化学选择性标记蛋白质,我们还试图确定不同的生物偶联接头,可以作为 ncAA 侧链掺入蛋白质中,并通过相互兼容的标记化学进行后续功能化。为此,我们表明,最近开发的化学选择性快速偶氮偶联反应(CRACR)可与针对 5-羟色氨酸(5HTP)的应变促进叠氮-炔环加成反应(SPAAC)以及针对 p-叠氮苯丙氨酸(pAzF)的应变促进反电子需求 Diels-Alder 环加成反应(SPIEDAC)兼容,用于在多个位点上快速、无催化剂的蛋白质标记。结合这些相互正交的无义抑制系统和它们所包含的相互兼容的生物偶联接头,我们证明了重组表达蛋白在多达三个不同位点的特异性标记。