Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan.
Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.
Sci Rep. 2019 Mar 25;9(1):5057. doi: 10.1038/s41598-019-41500-x.
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.
深度学习在神经影像学大数据中的应用将有助于开发神经疾病的计算机辅助诊断。使用深度学习的模式识别可以提取各种神经疾病特有的神经影像学信号特征,从而实现更好的诊断。在这项研究中,我们开发了 MNet,这是一种新型的深度神经网络,用于使用静息态脑磁图(MEG)信号对多种神经疾病进行分类。我们使用了 67 名健康受试者、26 名脊髓损伤患者和 140 名癫痫患者的 MEG 信号,通过 10 倍交叉验证使用该网络进行训练和测试。经过训练的 MNet 成功地对健康受试者和两种神经疾病患者进行了分类,准确率为 70.7±10.6%,明显高于使用支持向量机作为分类器计算的来自六个频带(δ:1-4 Hz;θ:4-8 Hz;低-α:8-10 Hz;高-α:10-13 Hz;β:13-30 Hz;低-γ:30-50 Hz)的每个通道的相对功率的准确率 63.4±12.7%(p=4.2×10)。每种疾病的分类特异性范围为 86-94%。我们的结果表明,这项技术对于开发一种分类器将是有用的,该分类器将改善神经诊断,并能够高度特异性地识别疾病。