Suppr超能文献

微生物电合成中的微生物电子摄取:一篇小综述。

Microbial electron uptake in microbial electrosynthesis: a mini-review.

机构信息

Department of Biology, Washington University in Saint Louis, One Brookings Drive, St. Louis, MO, 63130, USA.

出版信息

J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1419-1426. doi: 10.1007/s10295-019-02166-6. Epub 2019 Mar 28.

Abstract

Microbial electron uptake (EU) is the biological capacity of microbes to accept electrons from electroconductive solid materials. EU has been leveraged for sustainable bioproduction strategies via microbial electrosynthesis (MES). MES often involves the reduction of carbon dioxide to multi-carbon molecules, with electrons derived from electrodes in a bioelectrochemical system. EU can be indirect or direct. Indirect EU-based MES uses electron mediators to transfer electrons to microbes. Although an excellent initial strategy, indirect EU requires higher electrical energy. In contrast, the direct supply of cathodic electrons to microbes (direct EU) is more sustainable and energy efficient. Nonetheless, low product formation due to low electron transfer rates during direct EU remains a major challenge. Compared to indirect EU, direct EU is less well-studied perhaps due to the more recent discovery of this microbial capability. This mini-review focuses on the recent advances and challenges of direct EU in relation to MES.

摘要

微生物电子摄取(EU)是微生物从导电固体材料中接受电子的生物学能力。通过微生物电化学合成(MES),EU 已被用于可持续的生物生产策略。MES 通常涉及将二氧化碳还原为多碳分子,电子则来自生物电化学系统中的电极。EU 可以是间接的,也可以是直接的。基于间接 EU 的 MES 使用电子介体将电子转移到微生物。虽然这是一种出色的初始策略,但间接 EU 需要更高的电能。相比之下,直接向微生物提供阴极电子(直接 EU)更具可持续性和能源效率。然而,由于直接 EU 期间电子转移速率较低,导致产物形成率较低,这仍然是一个主要挑战。与间接 EU 相比,直接 EU 的研究较少,这可能是由于这种微生物能力的发现较晚。本综述重点介绍了直接 EU 在 MES 方面的最新进展和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验