Suppr超能文献

iMotor-CNN:通过 Chou 的 5 步规则使用 2D 卷积神经网络识别细胞骨架马达蛋白的分子功能。

iMotor-CNN: Identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou's 5-step rule.

机构信息

Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 639798, Singapore.

Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, 138634, Singapore.

出版信息

Anal Biochem. 2019 Jun 15;575:17-26. doi: 10.1016/j.ab.2019.03.017. Epub 2019 Mar 28.

Abstract

Motor proteins are the driving force behind muscle contraction and are responsible for the active transportation of most proteins and vesicles in the cytoplasm. There are three superfamilies of cytoskeletal motor proteins with various molecular functions and structures: dynein, kinesin, and myosin. The functional loss of a specific motor protein molecular function has linked to a variety of human diseases, e.g., Charcot-Marie-Tooth disease, kidney disease. Therefore, creating a precise model to classify motor proteins is essential for helping biologists understand their molecular functions and design drug targets according to their impact on human diseases. Here we attempt to classify cytoskeleton motor proteins using deep learning, which has been increasingly and widely used to address numerous problems in a variety of fields resulting in state-of-the-art results. Our effective deep convolutional neural network is able to achieve an independent test accuracy of 97.5%, 96.4%, and 96.1% for each superfamily, respectively. Compared to other state-of-the-art methods, our approach showed a significant improvement in performance across a range of evaluation metrics. Through the proposed study, we provide an effective model for classifying motor proteins and a basis for further research that can enhance the performance of protein function classification using deep learning.

摘要

马达蛋白是肌肉收缩的驱动力,负责细胞质中大多数蛋白质和囊泡的主动运输。细胞骨架马达蛋白有三个超家族,具有不同的分子功能和结构:动力蛋白、驱动蛋白和肌球蛋白。特定的马达蛋白分子功能的丧失与多种人类疾病有关,例如,Charcot-Marie-Tooth 病、肾病。因此,建立一个精确的模型来对马达蛋白进行分类对于帮助生物学家理解它们的分子功能以及根据它们对人类疾病的影响设计药物靶点至关重要。在这里,我们尝试使用深度学习来对细胞骨架马达蛋白进行分类,深度学习已越来越广泛地应用于解决各种领域的众多问题,取得了最先进的结果。我们的有效深度卷积神经网络能够分别实现对每个超家族的独立测试准确率为 97.5%、96.4%和 96.1%。与其他最先进的方法相比,我们的方法在一系列评估指标上的性能都有显著提高。通过提出的研究,我们为马达蛋白的分类提供了一个有效的模型,并为进一步的研究提供了一个基础,该研究可以通过深度学习提高蛋白质功能分类的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验