School of Biological Sciences, University of Auckland, Auckland, New Zealand
Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
EMBO Rep. 2019 Jun;20(6). doi: 10.15252/embr.201847427. Epub 2019 Apr 5.
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
噬菌体(“细菌捕食者”)或噬菌体是指感染细菌的病毒的统称。虽然大多数噬菌体是杀死其细菌宿主的病原体,但亚类丝状体噬菌体科的丝状噬菌体与它们的细菌宿主生活在合作关系中,类似于现代共享经济中发现的主要行为:点对点支持,以抵消任何负担。丝状噬菌体对细菌的负担很小,通过提供帮助构建更好的生物膜的服务来抵消这种负担,或者提供毒素和其他增加毒力的因素,或者改变行为,为其细菌宿主提供新的运动活性。过去、现在和未来的生物技术应用都建立在这种噬菌体-宿主的协同作用之上,包括 DNA 测序技术、基因工程工具以及基因表达和蛋白质生产的分子分析,以及用于筛选蛋白质-配体和蛋白质-蛋白质相互作用的噬菌体展示技术。随着世界各地基因组和宏基因组测序调查的爆炸式增长,我们逐渐意识到,我们对丝状噬菌体多样性的了解仍处于冰山一角,预示着新的生物学和生物技术即将到来。