Suppr超能文献

丝状噬菌体:微生物共享经济的掌控者。

Filamentous phages: masters of a microbial sharing economy.

机构信息

School of Biological Sciences, University of Auckland, Auckland, New Zealand

Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia

出版信息

EMBO Rep. 2019 Jun;20(6). doi: 10.15252/embr.201847427. Epub 2019 Apr 5.

Abstract

Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.

摘要

噬菌体(“细菌捕食者”)或噬菌体是指感染细菌的病毒的统称。虽然大多数噬菌体是杀死其细菌宿主的病原体,但亚类丝状体噬菌体科的丝状噬菌体与它们的细菌宿主生活在合作关系中,类似于现代共享经济中发现的主要行为:点对点支持,以抵消任何负担。丝状噬菌体对细菌的负担很小,通过提供帮助构建更好的生物膜的服务来抵消这种负担,或者提供毒素和其他增加毒力的因素,或者改变行为,为其细菌宿主提供新的运动活性。过去、现在和未来的生物技术应用都建立在这种噬菌体-宿主的协同作用之上,包括 DNA 测序技术、基因工程工具以及基因表达和蛋白质生产的分子分析,以及用于筛选蛋白质-配体和蛋白质-蛋白质相互作用的噬菌体展示技术。随着世界各地基因组和宏基因组测序调查的爆炸式增长,我们逐渐意识到,我们对丝状噬菌体多样性的了解仍处于冰山一角,预示着新的生物学和生物技术即将到来。

相似文献

1
Filamentous phages: masters of a microbial sharing economy.
EMBO Rep. 2019 Jun;20(6). doi: 10.15252/embr.201847427. Epub 2019 Apr 5.
2
'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'.
FEMS Microbiol Rev. 2015 Jul;39(4):465-87. doi: 10.1093/femsre/fuu007. Epub 2015 Feb 10.
3
Computational approaches to predict bacteriophage-host relationships.
FEMS Microbiol Rev. 2016 Mar;40(2):258-72. doi: 10.1093/femsre/fuv048. Epub 2015 Dec 9.
4
Bacteriophage Adherence to Mucus Mediates Preventive Protection against Pathogenic Bacteria.
mBio. 2019 Nov 19;10(6):e01984-19. doi: 10.1128/mBio.01984-19.
5
First Characterization of -Specific Filamentous Phages.
Viruses. 2024 May 27;16(6):857. doi: 10.3390/v16060857.
8
Bacteria-phage interactions in natural environments.
Adv Appl Microbiol. 2014;89:135-83. doi: 10.1016/B978-0-12-800259-9.00004-4.
9
Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities.
FEMS Microbiol Rev. 2014 Sep;38(5):916-31. doi: 10.1111/1574-6976.12072. Epub 2014 Mar 27.
10
Phage Life Cycles Behind Bacterial Biodiversity.
Curr Med Chem. 2017 Nov 24;24(36):3987-4001. doi: 10.2174/0929867324666170413100136.

引用本文的文献

1
Crosstalk between inovirus core gene and accessory toxin-antitoxin system mediates polylysogeny.
Nat Commun. 2025 Aug 7;16(1):7268. doi: 10.1038/s41467-025-62378-6.
3
The extended mobility of plasmids.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf652.
6
Genomic analysis of prophages in 44 clinical strains of isolated in Saudi Arabia.
Front Cell Infect Microbiol. 2025 Apr 28;15:1563781. doi: 10.3389/fcimb.2025.1563781. eCollection 2025.
7
New Pseudomonas infections drive Pf phage transmission in CF airways.
JCI Insight. 2025 Apr 22. doi: 10.1172/jci.insight.188146.
10
Development and application of an interbacterial DNA delivery system based on M13 bacteriophage.
Arch Microbiol. 2025 Apr 5;207(5):113. doi: 10.1007/s00203-025-04309-z.

本文引用的文献

1
Utilization of Filamentous Phage ϕRSM3 to Control Bacterial Wilt Caused by Ralstonia solanacearum.
Plant Dis. 2012 Aug;96(8):1204-1209. doi: 10.1094/PDIS-12-11-1023-RE.
2
Accessory Toxins of Pathogens and Their Role in Epithelial Disruption During Infection.
Front Microbiol. 2018 Sep 20;9:2248. doi: 10.3389/fmicb.2018.02248. eCollection 2018.
3
Bacteriophage T7 transcription system: an enabling tool in synthetic biology.
Biotechnol Adv. 2018 Dec;36(8):2129-2137. doi: 10.1016/j.biotechadv.2018.10.001. Epub 2018 Oct 2.
4
Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin.
Nat Commun. 2018 Sep 21;9(1):3840. doi: 10.1038/s41467-018-06298-8.
5
6
Virus classification - where do you draw the line?
Arch Virol. 2018 Aug;163(8):2037-2046. doi: 10.1007/s00705-018-3938-z. Epub 2018 Jul 24.
7
From Host to Phage Metabolism: Hot Tales of Phage T4's Takeover of .
Viruses. 2018 Jul 21;10(7):387. doi: 10.3390/v10070387.
9
Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities.
Sci Rep. 2018 Jul 2;8(1):9973. doi: 10.1038/s41598-018-28326-9.
10
Filamentous Bacteriophage Proteins and Assembly.
Subcell Biochem. 2018;88:261-279. doi: 10.1007/978-981-10-8456-0_12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验