Díez-Pascual Ana M, Díez-Vicente Angel L
Analytical Chemistry, Physical Chemistry and Chemical Engineering Department, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, E-28871 Alcalá de Henares, Madrid, Spain.
J Mater Chem B. 2017 Jun 14;5(22):4084-4096. doi: 10.1039/c7tb00497d. Epub 2017 May 16.
A novel biodegradable poly(glycolic acid-co-propylene fumarate) (PGA-co-PPF) copolymer has been synthesized via ring-opening polymerization. Graphene oxide (GO) and hydroxyapatite nanorods have been incorporated into PGA-co-PPF through electrospinning to yield hybrid nanocomposite fibers, and their morphology, water uptake, biodegradability, cytotoxicity, and mechanical, thermal and antibacterial properties have been analyzed. The addition of GO improved the dispersion of the HA nanorods within the matrix, and led to the formation of thinner fibers. The simultaneous incorporation of both nanofillers significantly increased the water absorption, biodegradation rate and protein adsorption capability of PGA-co-PPF. The hybrids induced higher osteoblast cell vitality and alkaline phosphatase activity than the neat copolymer and binary nanocomposites with either HA or GO, and showed higher biocidal activity against Gram-positive S. aureus and Gram-negative E. coli bacteria. Furthermore, experimental results revealed a synergistic effect of the nanofillers on improving the copolymer biocompatibility, thermal stability, stiffness, strength and toughness, and the nanocomposite with 20 wt% HA and 5 wt% GO exhibited the best combination of properties. The development of multifunctional polymer nanocomposite fibers with good biodegradability, very low toxicity, high tensile modulus and strong bactericidal activity opens up new perspectives for bone tissue engineering applications.
一种新型可生物降解的聚(乙醇酸 - 共 - 富马酸丙二醇酯)(PGA - co - PPF)共聚物已通过开环聚合反应合成。氧化石墨烯(GO)和羟基磷灰石纳米棒已通过静电纺丝法掺入PGA - co - PPF中,以制备杂化纳米复合纤维,并对其形态、吸水性、生物降解性、细胞毒性以及力学、热学和抗菌性能进行了分析。GO的加入改善了HA纳米棒在基质中的分散性,并导致形成更细的纤维。两种纳米填料同时掺入显著提高了PGA - co - PPF的吸水性、生物降解率和蛋白质吸附能力。与纯共聚物以及含有HA或GO的二元纳米复合材料相比,这些杂化物诱导了更高的成骨细胞活力和碱性磷酸酶活性,并且对革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌表现出更高的杀菌活性。此外,实验结果揭示了纳米填料在改善共聚物生物相容性、热稳定性、硬度、强度和韧性方面的协同效应,并且含有20 wt% HA和5 wt% GO的纳米复合材料表现出最佳的性能组合。具有良好生物降解性、极低毒性、高拉伸模量和强杀菌活性的多功能聚合物纳米复合纤维的开发为骨组织工程应用开辟了新的前景。