Suppr超能文献

多种生物标志物算法预测盆腔肿块女性的上皮性卵巢癌:是否有额外的标志物可以改善性能?

Multiple biomarker algorithms to predict epithelial ovarian cancer in women with a pelvic mass: Can additional makers improve performance?

机构信息

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester, Rochester, NY 14620, USA; Center for Biomarkers and Emerging Technologies, Women and Infants Hospital/Brown University, RI 02905, USA; Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital/Brown University, RI 02905, USA.

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester, Rochester, NY 14620, USA.

出版信息

Gynecol Oncol. 2019 Jul;154(1):150-155. doi: 10.1016/j.ygyno.2019.04.006. Epub 2019 Apr 13.

Abstract

INTRODUCTION

Management of a woman with a pelvic mass is complicated by difficulty in discriminating malignant from benign disease. Many serum biomarkers have been examined to determine their sensitivity for detecting malignancy. This study was designed to evaluate if the addition of biomarkers to HE4 and CA125, as used in the Risk of Malignancy Algorithm (ROMA), can improve the detection of EOC.

METHODS

This was an IRB approved, prospective clinical trial examining serum obtained from women diagnosed with a pelvic mass who subsequently underwent surgery. Serum biomarker levels for CA125, HE4, YKL-40, transthyretin, ApoA1, Beta-2-microglobulin, transferrin, and LPA were measured. Logistic regression analysis was performed for various marker combinations, ROC curves were generated, and the area under the curves (AUCs) were determined.

RESULTS

A total of 184 patients met inclusion criteria with a median age of 56 years (Range 20-91). Final pathology revealed there were 103 (56.0%) benign tumors, 4 (2.2%) LMP tumors, 61 EOC (33.1%), 2 (1.1%) non-EOC ovarian cancers, 6 (3.3%) gynecologic cancers with metastasis to the ovary and 8 (4.3%) non-gynecologic cancers with metastasis to the ovary. The combination of HE4 and CA125 (i.e. ROMA) achieved an AUC of 91.2% (95% CI: 86.0-96.4) for the detection of EOC vs benign disease. The combination of CA125, HE4, YKL-40, transthyretin, ApoA1, Beta 2 microglobulin, transferrin, LPA and menopausal status achieved the highest AUC of 94.6% (95% CI: 90.1-99.2) but this combination was not significantly better than the HE4 and CA125 combination alone (p = 0.078).

CONCLUSIONS

The addition of select further serum biomarkers to HE4 and CA125 does not add to the performance of the dual marker combination for the detection of ovarian cancer.

摘要

简介

由于难以区分良性和恶性疾病,因此对患有盆腔肿块的女性的管理变得复杂。已经检查了许多血清生物标志物来确定其对恶性肿瘤的检测敏感性。本研究旨在评估将 HE4 和 CA125 与用于恶性肿瘤风险算法(ROMA)的生物标志物联合使用是否可以提高对 EOC 的检测。

方法

这是一项经过 IRB 批准的前瞻性临床试验,检查了随后接受手术的被诊断为盆腔肿块的女性获得的血清。测量了 CA125、HE4、YKL-40、转甲状腺素、ApoA1、β-2-微球蛋白、转铁蛋白和 LPA 的血清生物标志物水平。对各种标志物组合进行逻辑回归分析,生成 ROC 曲线,并确定曲线下面积(AUC)。

结果

共有 184 名符合纳入标准的患者,中位年龄为 56 岁(范围 20-91)。最终病理学显示有 103 例(56.0%)良性肿瘤,4 例(2.2%)低度恶性潜能肿瘤,61 例 EOC(33.1%),2 例(1.1%)非 EOC 卵巢癌,6 例(3.3%)妇科癌症伴卵巢转移,8 例(4.3%)非妇科癌症伴卵巢转移。HE4 和 CA125 的组合(即 ROMA)对 EOC 与良性疾病的检测的 AUC 为 91.2%(95%CI:86.0-96.4)。CA125、HE4、YKL-40、转甲状腺素、ApoA1、β-2 微球蛋白、转铁蛋白、LPA 和绝经状态的组合获得了最高的 AUC 为 94.6%(95%CI:90.1-99.2),但与单独使用 HE4 和 CA125 相比,该组合并没有显著更好(p=0.078)。

结论

将特定的其他血清生物标志物添加到 HE4 和 CA125 中不会提高双标志物组合对卵巢癌的检测性能。

相似文献

引用本文的文献

3
Machine-learning diagnostic models for ovarian tumors.用于卵巢肿瘤的机器学习诊断模型。
Heliyon. 2024 Sep 1;10(19):e36994. doi: 10.1016/j.heliyon.2024.e36994. eCollection 2024 Oct 15.

本文引用的文献

1
Cancer statistics, 2018.癌症统计数据,2018 年。
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.
2
Validation of a Novel Biomarker Panel for the Detection of Ovarian Cancer.用于检测卵巢癌的新型生物标志物组合的验证
Cancer Epidemiol Biomarkers Prev. 2016 Sep;25(9):1333-40. doi: 10.1158/1055-9965.EPI-15-1299. Epub 2016 Jul 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验