Suppr超能文献

机器学习构建和验证非小细胞肺癌患者放射性肺炎预测模型。

Machine Learning to Build and Validate a Model for Radiation Pneumonitis Prediction in Patients with Non-Small Cell Lung Cancer.

机构信息

Biomedical Engineering, Shenzhen Polytechnic, Shenzhen, China.

BioHealth Informatics, School Of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana.

出版信息

Clin Cancer Res. 2019 Jul 15;25(14):4343-4350. doi: 10.1158/1078-0432.CCR-18-1084. Epub 2019 Apr 16.

Abstract

PURPOSE

Radiation pneumonitis is an important adverse event in patients with non-small cell lung cancer (NSCLC) receiving thoracic radiotherapy. However, the risk of radiation pneumonitis grade ≥ 2 (RP2) has not been well predicted. This study hypothesized that inflammatory cytokines or the dynamic changes during radiotherapy can improve predictive accuracy for RP2.

EXPERIMENTAL DESIGN

Levels of 30 inflammatory cytokines and clinical information in patients with stages I-III NSCLC treated with radiotherapy were from our prospective studies. Statistical analysis was used to select predictive cytokine candidates and clinical covariates for adjustment. Machine learning algorithm was used to develop the generalized linear model for predicting risk RP2.

RESULTS

A total of 131 patients were eligible and 17 (13.0%) developed RP2. IL8 and CCL2 had significantly (Bonferroni) lower expression levels in patients with RP2 than without RP2. But none of the changes in cytokine levels during radiotherapy was significantly associated with RP2. The final predictive GLM model for RP2 was established, including IL8 and CCL2 at baseline level and two clinical variables. Nomogram was constructed based on the GLM model. The model's predicting ability was validated in the completely independent test set (AUC = 0.863, accuracy = 80.0%, sensitivity = 100%, specificity = 76.5%).

CONCLUSIONS

By machine learning, this study has developed and validated a comprehensive model integrating inflammatory cytokines with clinical variables to predict RP2 before radiotherapy that provides an opportunity to guide clinicians.

摘要

目的

放射性肺炎是接受胸部放射治疗的非小细胞肺癌(NSCLC)患者的一种重要不良反应。然而,放射性肺炎 2 级及以上(RP2)的风险尚未得到很好的预测。本研究假设炎症细胞因子或放射治疗过程中的动态变化可以提高 RP2 的预测准确性。

实验设计

来自我们前瞻性研究的 I-III 期 NSCLC 患者接受放疗时的 30 种炎症细胞因子水平和临床信息。统计分析用于选择预测细胞因子候选物和临床协变量进行调整。机器学习算法用于开发预测风险 RP2 的广义线性模型。

结果

共有 131 名患者符合条件,其中 17 名(13.0%)发生了 RP2。与无 RP2 患者相比,RP2 患者的 IL8 和 CCL2 表达水平显著(Bonferroni)降低。但放射治疗过程中细胞因子水平的任何变化均与 RP2 无显著相关性。建立了用于预测 RP2 的最终预测 GLM 模型,包括基线水平的 IL8 和 CCL2 以及两个临床变量。基于 GLM 模型构建了列线图。该模型在完全独立的测试集中得到了验证(AUC=0.863,准确率=80.0%,灵敏度=100%,特异性=76.5%)。

结论

通过机器学习,本研究开发并验证了一个综合模型,该模型将炎症细胞因子与临床变量相结合,可在放射治疗前预测 RP2,为临床医生提供了指导机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验