Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28357 Bremen, Germany. Author to whom correspondence should be addressed.
Phys Med Biol. 2019 Jun 21;64(12):125026. doi: 10.1088/1361-6560/ab1a4f.
Magnetic particle imaging (MPI) is a medical imaging modality of recent origin, and it exploits the nonlinear magnetization phenomenon to recover a spatially dependent concentration of nanoparticles. In practice, image reconstruction in MPI is frequently carried out by standard Tikhonov regularization with nonnegativity constraint, which is then minimized by a Kaczmarz type method. In this work, we revisit two issues in the numerical reconstruction in MPI in the lens of inverse theory, i.e. the choice of fidelity and acceleration, and propose two algorithmic tricks, i.e. a whitening procedure to incorporate the noise statistics and accelerating Kaczmarz iteration via randomized SVD. The two tricks are straightforward to implement and easy to incorporate in existing reconstruction algorithms. Their significant potentials are illustrated by extensive numerical experiments on a publicly available dataset.
磁性粒子成像(MPI)是一种新兴的医学成像方式,它利用非线性磁化现象来恢复纳米粒子的空间依赖性浓度。在实践中,MPI 中的图像重建通常通过具有非负约束的标准 Tikhonov 正则化来进行,然后通过 Kaczmarz 型方法最小化。在这项工作中,我们从反演理论的角度重新审视了 MPI 中数值重建的两个问题,即保真度和加速的选择,并提出了两种算法技巧,即白化处理以纳入噪声统计和通过随机 SVD 加速 Kaczmarz 迭代。这两种技巧易于实现,并且易于纳入现有的重建算法中。通过对公开可用数据集的广泛数值实验,说明了它们的显著潜力。