Department of Biochemistry and Molecular Biology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL, 32610-3633, USA.
Cancer Metastasis Rev. 2019 Jun;38(1-2):157-164. doi: 10.1007/s10555-019-09794-5.
The Warburg effect is prevalent in human cancer. Accordingly, most cancer cells display highly elevated glycolysis without proportionally increasing pyruvate oxidation. The metastatic process imposes strong selective pressure on cancer cells, and metastasizing cancer cells experience heightened oxidative stress. By constraining mitochondrial oxidative metabolism, the Warburg effect helps cancer cells to minimize oxidative stress, thereby facilitating metastatic dissemination. The PGC1α transcriptional coactivator is a central coordinator of oxidative metabolism. While promoting oxidative metabolism and reversing the Warburg effect, PGC1α critically activates antioxidant genes and protects cells against oxidative damage. Therefore, depending on the context, PGC1α may promote or suppress tumor metastasis. Cancer cells generally retain metabolic flexibility and can resist antiglycolysis treatment by undergoing metabolic reprogramming. Synthetic lethal combination therapies are thus essential to attack the liabilities of the Warburg metabolism for therapeutic benefit.
瓦博格效应在人类癌症中普遍存在。因此,大多数癌细胞表现出高度升高的糖酵解,而没有相应地增加丙酮酸氧化。转移过程对癌细胞施加了强大的选择压力,转移的癌细胞经历了加剧的氧化应激。通过限制线粒体氧化代谢,瓦博格效应帮助癌细胞最大限度地减少氧化应激,从而促进转移的扩散。PGC1α 转录共激活因子是氧化代谢的中心协调者。PGC1α 通过促进氧化代谢和逆转瓦博格效应,同时关键地激活抗氧化基因并保护细胞免受氧化损伤。因此,取决于具体情况,PGC1α 可能促进或抑制肿瘤转移。癌细胞通常保持代谢灵活性,并可以通过代谢重编程来抵抗抗糖酵解治疗。因此,合成致死联合疗法对于利用瓦博格代谢的缺陷来获得治疗益处至关重要。