Kurc Tahsin, Bakas Spyridon, Ren Xuhua, Bagari Aditya, Momeni Alexandre, Huang Yue, Zhang Lichi, Kumar Ashish, Thibault Marc, Qi Qi, Wang Qian, Kori Avinash, Gevaert Olivier, Zhang Yunlong, Shen Dinggang, Khened Mahendra, Ding Xinghao, Krishnamurthi Ganapathy, Kalpathy-Cramer Jayashree, Davis James, Zhao Tianhao, Gupta Rajarsi, Saltz Joel, Farahani Keyvan
Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, United States.
Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, United States.
Front Neurosci. 2020 Feb 21;14:27. doi: 10.3389/fnins.2020.00027. eCollection 2020.
Biomedical imaging Is an important source of information in cancer research. Characterizations of cancer morphology at onset, progression, and in response to treatment provide complementary information to that gleaned from genomics and clinical data. Accurate extraction and classification of both visual and latent image features Is an increasingly complex challenge due to the increased complexity and resolution of biomedical image data. In this paper, we present four deep learning-based image analysis methods from the Computational Precision Medicine (CPM) satellite event of the 21st International Medical Image Computing and Computer Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation method designed to segment nuclei in whole slide tissue images (WSIs) of adult diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM challenge datasets. Three methods are classification methods developed to categorize adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using radiographic and histologic image data. These methods achieved accuracy values of 0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications to the number of total cases, with the challenge datasets. The evaluations of the four methods indicate that (1) carefully constructed deep learning algorithms are able to produce high accuracy in the analysis of biomedical image data and (2) the combination of radiographic with histologic image information improves classification performance.
生物医学成像在癌症研究中是重要的信息来源。对癌症在发病、进展及治疗反应过程中的形态特征进行描述,能为从基因组学和临床数据中收集到的信息提供补充。由于生物医学图像数据的复杂性和分辨率不断提高,准确提取和分类视觉及潜在图像特征成为一项日益复杂的挑战。在本文中,我们展示了来自第21届国际医学图像计算与计算机辅助干预大会(MICCAI 2018)计算精准医学(CPM)卫星会议的四种基于深度学习的图像分析方法。一种方法是用于分割成人弥漫性胶质瘤病例全切片组织图像(WSIs)中细胞核的分割方法。它在CPM挑战数据集中的骰子相似系数达到了0.868。三种方法是分类方法,用于使用放射学和组织学图像数据将成人弥漫性胶质瘤病例分类为少突胶质细胞瘤和星形细胞瘤类别。在挑战数据集中,这些方法的准确率分别为0.75、0.80和0.90,计算方式为正确分类的病例数与总病例数的比率。这四种方法的评估表明:(1)精心构建的深度学习算法能够在生物医学图像数据分析中产生高精度;(2)放射学图像信息与组织学图像信息相结合可提高分类性能。