Wen Si, Kurc Tahsin M, Hou Le, Saltz Joel H, Gupta Rajarsi R, Batiste Rebecca, Zhao Tianhao, Nguyen Vu, Samaras Dimitris, Zhu Wei
Stony Brook University, Stony Brook, NY, USA.
Stony Brook School of Medicine, Stony Brook, NY, USA.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:227-236. eCollection 2018.
Segmentation of nuclei in whole slide tissue images is a common methodology in pathology image analysis. Most segmentation algorithms are sensitive to input algorithm parameters and the characteristics of input images (tissue morphology, staining, etc.). Because there can be large variability in the color, texture, and morphology of tissues within and across cancer types (heterogeneity can exist even within a tissue specimen), it is likely that a set of input parameters will not perform well across multiple images. It is, therefore, highly desired, and necessary in some cases, to carry out a quality control of segmentation results. This work investigates the application of machine learning in this process. We report on the application of active learning for segmentation quality assessment for pathology images and compare three classification methods, Support Vector Machine (SVM), Random Forest (RF) and Convolutional Neural Network (CNN), for their performance improvement and efficiency.
全切片组织图像中的细胞核分割是病理图像分析中的一种常见方法。大多数分割算法对输入算法参数和输入图像的特征(组织形态、染色等)敏感。由于不同癌症类型之间以及同一癌症类型内部的组织在颜色、纹理和形态上可能存在很大差异(甚至在一个组织样本中也可能存在异质性),因此一组输入参数可能无法在多幅图像上都表现良好。因此,非常需要并且在某些情况下有必要对分割结果进行质量控制。这项工作研究了机器学习在这个过程中的应用。我们报告了主动学习在病理图像分割质量评估中的应用,并比较了支持向量机(SVM)、随机森林(RF)和卷积神经网络(CNN)这三种分类方法在性能提升和效率方面的表现。