Chemistry I Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
Appl Environ Microbiol. 2019 Jun 17;85(13). doi: 10.1128/AEM.00671-19. Print 2019 Jul 1.
Many recombinant proteins that are produced in have to be targeted to the periplasm to be functional. N-terminal signal peptides can be used to direct recombinant proteins to the membrane-embedded Sec translocon, a multiprotein complex that translocates proteins across the membrane into the periplasm. We have recently shown that the cotranslational targeting of the single-chain variable antibody fragment BL1 saturates the capacity of the Sec translocon leading to impaired translocation of secretory proteins and protein misfolding/aggregation in the cytoplasm. In turn, protein production yields and biomass formation were low. Here, we study the consequences of targeting BL1 posttranslationally to the Sec translocon. Notably, the posttranslational targeting of BL1 does not saturate the Sec translocon capacity, and both biomass formation and protein production yields are increased. Analyzing the proteome of cells producing the posttranslationally targeted BL1 indicates that the decreased synthesis of endogenous secretory and membrane proteins prevents a saturation of the Sec translocon capacity. Furthermore, in these cells, highly abundant chaperones and proteases can clear misfolded/aggregated proteins from the cytoplasm, thereby improving the fitness of these cells. Thus, the posttranslational targeting of BL1 enables its efficient production in the periplasm due to a favorable adaptation of the proteome. We envisage that our observations can be used to engineer for the improved production of recombinant secretory proteins. The bacterium is widely used to produce recombinant proteins. To fold properly, many recombinant proteins have to be targeted to the periplasm, but so far the impact of the targeting pathway of a recombinant protein to the periplasm has not been extensively investigated. Here, we show that the targeting pathway of a recombinant antibody fragment has a tremendous impact on cell physiology, ultimately affecting protein production yields in the periplasm and biomass formation. This indicates that studying the targeting and secretion of proteins into the periplasm could be used to design strategies to improve recombinant protein production yields.
许多在大肠杆菌中生产的重组蛋白必须靶向周质才能发挥功能。N 端信号肽可用于指导重组蛋白靶向膜嵌入的 Sec 易位子,这是一种跨膜转运蛋白的多蛋白复合物,将蛋白质转运到周质中。我们最近表明,单链可变抗体片段 BL1 的共翻译靶向使 Sec 易位子的容量达到饱和,从而导致分泌蛋白的转运受损和细胞质中的蛋白质错误折叠/聚集。反过来,蛋白质产量和生物量形成都很低。在这里,我们研究了 BL1 在后翻译靶向 Sec 易位子的后果。值得注意的是,BL1 的后翻译靶向不会使 Sec 易位子的容量饱和,并且生物量形成和蛋白质产量都增加。分析产生后翻译靶向 BL1 的细胞的蛋白质组表明,内源性分泌和膜蛋白的合成减少可防止 Sec 易位子容量饱和。此外,在这些细胞中,高丰度的伴侣蛋白和蛋白酶可以从细胞质中清除错误折叠/聚集的蛋白质,从而提高这些细胞的适应性。因此,由于 蛋白质组的有利适应,BL1 的后翻译靶向使其能够在周质中有效生产。我们设想,我们的观察结果可用于工程大肠杆菌以提高重组分泌蛋白的生产。大肠杆菌被广泛用于生产重组蛋白。为了正确折叠,许多重组蛋白必须靶向周质,但到目前为止,重组蛋白靶向周质的途径的影响尚未得到广泛研究。在这里,我们表明,重组抗体片段的靶向途径对细胞生理学有巨大影响,最终影响周质中的蛋白质产量和生物量形成。这表明研究蛋白质靶向和分泌到周质中可以用于设计策略来提高重组蛋白的生产产量。