Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.
Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany.
Biol Chem. 2019 Sep 25;400(10):1277-1288. doi: 10.1515/hsz-2018-0473.
To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.
为了阐明膜蛋白的结构和动态,已经开发出了高度先进的生物物理方法,这些方法通常需要大量的资源,无论是在样品制备还是实验分析方面。对于非常复杂的系统,如膜转运蛋白、离子通道或 G 蛋白偶联受体 (GPCR),在选定的位置掺入单个报告分子可以显著简化可观察到的现象和测量/分析的要求。在这里,我们将举例说明如何使用 19F 核磁共振 (NMR) 光谱作为一种强大但相对简单的工具来研究(膜)蛋白质结构、动态和配体相互作用。我们总结了将 19F 标记物掺入蛋白质中的方法,并讨论了已经可以从相对简单的 NMR 光谱中获得的有关膜蛋白的信息类型,重点是 GPCR,因为该技术是研究最广泛的膜蛋白家族。在未来,这些方法对于许多经历复杂功能动态和/或含有无规卷曲区域的蛋白质可能也特别感兴趣,这些蛋白质不适合 X 射线晶体学或低温电子显微镜 (cryoEM) 研究。