Suppr超能文献

利用生理数据和机器学习开发的新型儿科哮喘自动化评分系统。

Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma.

机构信息

Department of Pediatrics, Colorado School of Medicine, The Breathing Institute, University of Colorado, Children's Hospital Colorado, Aurora, Colorado.

Department of Computer Science, University of Colorado Boulder, Boulder, Colorado.

出版信息

Pediatr Pulmonol. 2019 Aug;54(8):1149-1155. doi: 10.1002/ppul.24342. Epub 2019 Apr 21.

Abstract

OBJECTIVES

Manual clinical scoring systems are the current standard used for acute asthma clinical care pathways. No automated system exists that assesses disease severity, time course, and treatment impact in pediatric acute severe asthma exacerbations.

WORKING HYPOTHESIS

machine learning applied to continuous vital sign data could provide a novel pediatric-automated asthma respiratory score (pARS) by using the manual pediatric asthma score (PAS) as the clinical care standard.

METHODS

Continuous vital sign monitoring data (heart rate, respiratory rate, and pulse oximetry) were merged with the health record data including a provider-determined PAS in children between 2 and 18 years of age admitted to the pediatric intensive care unit (PICU) for status asthmaticus. A cascaded artificial neural network (ANN) was applied to create an automated respiratory score and validated by two approaches. The ANN was compared with the Normal and Poisson regression models.

RESULTS

Out of an initial group of 186 patients, 128 patients met inclusion criteria. Merging physiologic data with clinical data yielded >37 000 data points for model training. The pARS score had good predictive accuracy, with 80% of the pARS values within ±2 points of the provider-determined PAS, especially over the mid-range of PASs (6-9). The Poisson and Normal distribution regressions yielded a smaller overall median absolute error.

CONCLUSIONS

The pARS reproduced the manually recorded PAS. Once validated and studied prospectively as a tool for research and for physician decision support, this methodology can be implemented in the PICU to objectively guide treatment decisions.

摘要

目的

手动临床评分系统是目前用于急性哮喘临床护理路径的标准。目前还没有评估儿科急性严重哮喘发作严重程度、时间进程和治疗效果的自动化系统。

工作假设

机器学习应用于连续生命体征数据,可以通过使用手动儿科哮喘评分(PAS)作为临床护理标准,为儿科急性哮喘呼吸评分(pARS)提供一种新的方法。

方法

连续生命体征监测数据(心率、呼吸率和脉搏血氧饱和度)与健康记录数据合并,包括在儿科重症监护病房(PICU)因哮喘持续状态入院的 2 至 18 岁儿童的提供者确定的 PAS。采用级联人工神经网络(ANN)创建自动化呼吸评分,并通过两种方法进行验证。ANN 与正态和泊松回归模型进行比较。

结果

在最初的 186 名患者中,有 128 名符合纳入标准。将生理数据与临床数据合并,为模型训练提供了超过 37000 个数据点。pARS 评分具有良好的预测准确性,80%的 pARS 值与提供者确定的 PAS 相差±2 分,尤其是在 PAS 中值(6-9)范围内。泊松和正态分布回归的总体中位数绝对误差较小。

结论

pARS 再现了手动记录的 PAS。一旦经过验证并作为研究和医生决策支持的工具进行前瞻性研究,这种方法就可以在 PICU 中实施,以客观地指导治疗决策。

相似文献

5
Predicting need for hospitalization in acute pediatric asthma.预测小儿急性哮喘的住院需求
Pediatr Emerg Care. 2008 Nov;24(11):735-44. doi: 10.1097/PEC.0b013e31818c268f.

引用本文的文献

本文引用的文献

2
Bringing Technology to Day-to-Day Asthma Management.将技术应用于日常哮喘管理。
Am J Respir Crit Care Med. 2018 Aug 1;198(3):291-292. doi: 10.1164/rccm.201805-0845ED.
5
Improving the Efficiency of Care for Pediatric Patients Hospitalized With Asthma.提高哮喘住院患儿的护理效率
Hosp Pediatr. 2017 Jan;7(1):31-38. doi: 10.1542/hpeds.2016-0108. Epub 2016 Dec 8.
9
Predicting asthma control deterioration in children.预测儿童哮喘控制的恶化情况。
BMC Med Inform Decis Mak. 2015 Oct 14;15:84. doi: 10.1186/s12911-015-0208-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验