State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20892, USA.
Sci Adv. 2019 Apr 19;5(4):eaav7174. doi: 10.1126/sciadv.aav7174. eCollection 2019 Apr.
The design of materials that can mimic the complex yet fast actuation phenomena in nature is important but challenging. Herein, we present a new paradigm for designing responsive hydrogel sheets that can exhibit ultrafast inverse snapping deformation. Dual-gradient structures of hydrogel sheets enable the accumulation of elastic energy in hydrogels by converting prestored energy and rapid reverse snapping (<1 s) to release the energy. By controlling the magnitude and location of energy prestored within the hydrogels, the snapping of hydrogel sheets can be programmed to achieve different structures and actuation behaviors. We have developed theoretical model to elucidate the crucial role of dual gradients and predict the snapping motion of various hydrogel materials. This new design principle provides guidance for fabricating actuation materials with applications in tissue engineering, soft robotics, and active medical implants.
设计能够模拟自然界中复杂而快速的致动现象的材料非常重要,但也极具挑战性。在此,我们提出了一种新的设计响应性水凝胶片的范例,该水凝胶片可以表现出超快的反向弹起变形。水凝胶片的双梯度结构可以通过转换预先存储的能量和快速反向弹起(<1 秒)来释放能量,从而在水凝胶中积累弹性能量。通过控制水凝胶中预先存储能量的大小和位置,可以对水凝胶片的弹起进行编程,以实现不同的结构和致动行为。我们已经开发了一个理论模型来阐明双梯度的关键作用,并预测各种水凝胶材料的弹起运动。这个新的设计原则为制造在组织工程、软机器人和活性医疗植入物中有应用的致动材料提供了指导。