Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China.
Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
Theor Appl Genet. 2019 Jul;132(7):2137-2154. doi: 10.1007/s00122-019-03343-y. Epub 2019 Apr 23.
Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.
玉米 GPAT 基因家族的全基因组分析、编码内质定位蛋白的 ZmMs33/ZmGPAT6 基因的细胞学特征及其四个保守基序,及其在玉米中的分子育种应用。甘油-3-磷酸酰基转移酶(GPAT)介导甘油脂质生物合成的初始步骤,在植物生长和发育中起着关键作用。与拟南芥中的 GPAT 基因相比,我们对玉米 GPAT 基因家族的了解非常有限。最近,我们实验室发现 ZmMs33 基因编码一种 sn-2 GPAT 蛋白,控制玉米雄性育性(Xie 等人,Theor Appl Genet 131:1363-1378, 2018)。然而,ZmMs33 的功能机制仍不清楚。在这里,我们报道了玉米 GPAT 基因家族的全基因组分析,发现 20 个玉米 GPAT 基因(ZmGPAT1-20)可分为三个不同的分支,与拟南芥的 10 个 GPAT 基因相似。在六个组织和六个发育阶段的花药中对这些 ZmGPAT 基因的表达分析表明,一些 ZmGPAT 可能在玉米生长和花药发育中起关键作用。其中,ZmGPAT6 对应于 ZmMs33 基因。系统细胞学观察表明,ZmMs33/ZmGPAT6 功能丧失导致花药表皮缺陷、花药壁层退化停滞、脐点和花粉外壁异常形成,最终导致玉米完全雄性不育。定位于内质网的 ZmMs33/ZmGPAT6 具有四个保守的氨基酸基序,对于酰基转移酶活性是必需的,而 ZmMs33/ZmGPAT6 基因座及其周围基因组区域在禾本科物种的进化过程中发生了很大的多样化。最后,利用转基因和标记辅助选择相结合的策略,开发了一种多控制不育系统,生产 ms33 雄性不育系。这项工作将为进一步阐明 ZmGPAT 基因的功能机制提供有用信息,并促进 ZmMs33/ZmGPAT6 基因在玉米中的分子育种应用。