Suppr超能文献

生物废弃物共消化以通过特定混合细菌培养物增强生物制氢过程。

Co-digestion of Biowastes to Enhance Biological Hydrogen Process by Defined Mixed Bacterial Cultures.

作者信息

Patel Sanjay K S, Ray Subhasree, Prakash Jyotsana, Wee Ji Hyang, Kim Sang-Yong, Lee Jung-Kul, Kalia Vipin Chandra

机构信息

1Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea.

2Department of Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007 India.

出版信息

Indian J Microbiol. 2019 Jun;59(2):154-160. doi: 10.1007/s12088-018-00777-8. Epub 2019 Jan 8.

Abstract

Co-digestion of biowastes for hydrogen (H) production using defined mixed cultures can overcome the high risk of failure due to contamination and imbalanced nutrient status. H production from biowastes-pea-shells, potato peels (PP), onion peels (OP) and apple pomace, either individually or in various combinations was evaluated by hydrolyzing with defined hydrolytic mixed bacterial culture (MHC5) and subjecting the hydrolysate to mixture of defined H producers (MMC6). Co-digestion of OP and PP hydrolysate supplemented at H production stage with GM-2 and M-9 media resulted in 95 and 102 l H/kg of Total solids (TS), respectively compared to 84 l H/kg of TS in control. Upscaling the process by digesting 4.0 l slurry (16-fold) resulted in 88.5 and 95 l H/kg of TS, respectively compared to 72 l H/kg of TS in control. Thus, H production by co-digestion of biowastes could be improved through the supplementation with very dilute medium (0.1 ×) and selection of suitable biowastes under unsterile conditions. The overall efficiency can be further enhanced by integrating it with bioprocesses for biopolymers such as polyhydroxyalkanoates and or biofuels like methane production.

摘要

使用特定混合培养物对生物废料进行共消化以生产氢气(H),可以克服因污染和营养状况失衡导致的高失败风险。通过用特定的水解混合细菌培养物(MHC5)进行水解,并将水解产物置于特定氢气生产者混合物(MMC6)中,对单独或各种组合的生物废料——豌豆壳、土豆皮(PP)、洋葱皮(OP)和苹果渣进行产氢评估。在产氢阶段用GM - 2和M - 9培养基补充OP和PP水解产物的共消化,分别产生了95和102升氢气/千克总固体(TS),而对照为84升氢气/千克TS。通过消化4.0升浆液(16倍放大)来扩大该过程,分别产生了88.5和95升氢气/千克TS,而对照为72升氢气/千克TS。因此,通过在非无菌条件下补充极稀培养基(0.1×)和选择合适的生物废料,可以提高生物废料共消化产氢量。通过将其与用于生物聚合物(如聚羟基脂肪酸酯)的生物过程或生物燃料(如甲烷生产)相结合,整体效率可以进一步提高。

相似文献

1
Co-digestion of Biowastes to Enhance Biological Hydrogen Process by Defined Mixed Bacterial Cultures.
Indian J Microbiol. 2019 Jun;59(2):154-160. doi: 10.1007/s12088-018-00777-8. Epub 2019 Jan 8.
2
Dark-Fermentative Biological Hydrogen Production from Mixed Biowastes Using Defined Mixed Cultures.
Indian J Microbiol. 2017 Jun;57(2):171-176. doi: 10.1007/s12088-017-0643-7. Epub 2017 Mar 9.
3
Co-utilization of Crude Glycerol and Biowastes for Producing Polyhydroxyalkanoates.
Indian J Microbiol. 2018 Mar;58(1):33-38. doi: 10.1007/s12088-017-0702-0. Epub 2017 Dec 27.
4
Integrative Approach for Producing Hydrogen and Polyhydroxyalkanoate from Mixed Wastes of Biological Origin.
Indian J Microbiol. 2016 Sep;56(3):293-300. doi: 10.1007/s12088-016-0595-3. Epub 2016 May 10.
5
Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.
Bioresour Technol. 2016 Jan;200:413-9. doi: 10.1016/j.biortech.2015.10.045. Epub 2015 Oct 19.
6
Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane.
Indian J Microbiol. 2014 Sep;54(3):262-7. doi: 10.1007/s12088-014-0467-7. Epub 2014 Apr 29.
7
Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures.
Bioresour Technol. 2015 Jan;176:136-41. doi: 10.1016/j.biortech.2014.11.029. Epub 2014 Nov 15.
8
Ecobiotechnological Approach for Exploiting the Abilities of Bacillus to Produce Co-polymer of Polyhydroxyalkanoate.
Indian J Microbiol. 2014 Jun;54(2):151-7. doi: 10.1007/s12088-014-0457-9. Epub 2014 Feb 21.

引用本文的文献

1
Nonsterile Process for Biohydrogen Production: Recent Updates, Challenges, and Opportunities.
Indian J Microbiol. 2024 Jun;64(2):445-456. doi: 10.1007/s12088-024-01319-1. Epub 2024 May 31.
2
A Microcosm Model for the Study of Microbial Community Shift and Carbon Emission from Landfills.
Indian J Microbiol. 2022 Jun;62(2):195-203. doi: 10.1007/s12088-021-00995-7. Epub 2022 Jan 11.
3
Genome mining discovery of hydrogen production pathway of Klebsiella sp. WL1316 fermenting cotton stalk hydrolysate.
Int Microbiol. 2022 Aug;25(3):503-513. doi: 10.1007/s10123-022-00241-0. Epub 2022 Feb 11.
4
Photocatalytic TiO/CdS/ZnS nanocomposite induces cell death by disrupting its metabolism and membrane integrity.
Indian J Microbiol. 2021 Dec;61(4):487-496. doi: 10.1007/s12088-021-00973-z. Epub 2021 Aug 18.
5
Biomolecules Production from Greenhouse Gases by Methanotrophs.
Indian J Microbiol. 2021 Dec;61(4):449-457. doi: 10.1007/s12088-021-00986-8. Epub 2021 Sep 25.
6
Nano-Biocatalysts: Potential Biotechnological Applications.
Indian J Microbiol. 2021 Dec;61(4):441-448. doi: 10.1007/s12088-021-00975-x. Epub 2021 Aug 28.
7
Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels.
Indian J Microbiol. 2021 Dec;61(4):427-440. doi: 10.1007/s12088-021-00977-9. Epub 2021 Aug 30.
8
Advancements in the Nanobiotechnological Applications.
Indian J Microbiol. 2021 Dec;61(4):401-403. doi: 10.1007/s12088-021-00979-7. Epub 2021 Sep 6.
9
Wild Halophytic Biomass Saccharification by Bacterial Enzyme Cocktail.
Front Microbiol. 2021 Sep 20;12:714940. doi: 10.3389/fmicb.2021.714940. eCollection 2021.
10
Biotin and Zn Increase Xylitol Production by .
Indian J Microbiol. 2021 Sep;61(3):331-337. doi: 10.1007/s12088-021-00960-4. Epub 2021 Jun 28.

本文引用的文献

1
Quorum sensing inhibitors as antipathogens: biotechnological applications.
Biotechnol Adv. 2019 Jan-Feb;37(1):68-90. doi: 10.1016/j.biotechadv.2018.11.006. Epub 2018 Nov 22.
2
Beyond the Theoretical Yields of Dark-Fermentative Biohydrogen.
Indian J Microbiol. 2018 Dec;58(4):529-530. doi: 10.1007/s12088-018-0759-4. Epub 2018 Aug 13.
3
Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent.
PLoS One. 2018 Jul 11;13(7):e0199059. doi: 10.1371/journal.pone.0199059. eCollection 2018.
4
Emerging technologies for the pretreatment of lignocellulosic biomass.
Bioresour Technol. 2018 Aug;262:310-318. doi: 10.1016/j.biortech.2018.04.099. Epub 2018 Apr 25.
5
Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae.
Bioresour Technol. 2018 Sep;263:25-32. doi: 10.1016/j.biortech.2018.04.096. Epub 2018 Apr 25.
6
Nanoparticles in Biological Hydrogen Production: An Overview.
Indian J Microbiol. 2018 Mar;58(1):8-18. doi: 10.1007/s12088-017-0678-9. Epub 2017 Sep 22.
7
Bioprocessing of Biodiesel Industry Effluent by Immobilized Bacteria to Produce Value-Added Products.
Appl Biochem Biotechnol. 2018 May;185(1):179-190. doi: 10.1007/s12010-017-2637-7. Epub 2017 Nov 4.
8
Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed.
Bioresour Technol. 2017 Oct;241:922-927. doi: 10.1016/j.biortech.2017.05.160. Epub 2017 May 29.
9
Dark-Fermentative Biological Hydrogen Production from Mixed Biowastes Using Defined Mixed Cultures.
Indian J Microbiol. 2017 Jun;57(2):171-176. doi: 10.1007/s12088-017-0643-7. Epub 2017 Mar 9.
10
Production of Methanol from Methane by Encapsulated .
J Microbiol Biotechnol. 2016 Dec 28;26(12):2098-2105. doi: 10.4014/jmb.1608.08053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验