Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
Department of Infectious Diseases, Genentech, South San Francisco, California, USA.
J Bacteriol. 2019 Jun 21;201(14). doi: 10.1128/JB.00213-19. Print 2019 Jul 15.
Capsular polysaccharides (CPSs) are virulence factors for many important pathogens. In , CPSs are synthesized via two distinct pathways, but both require proteins from the outer membrane polysaccharide export (OPX) family to complete CPS export from the periplasm to the cell surface. In this study, we compare the properties of the OPX proteins from the prototypical group 1 (Wzy-dependent) and group 2 (ABC transporter-dependent) pathways in K30 (Wza) and K2 (KpsD), respectively. In addition, we compare an OPX from serovar Typhi (VexA), which shares structural properties with Wza, while operating in an ABC transporter-dependent pathway. These proteins differ in distribution in the cell envelope and formation of stable multimers, but these properties do not align with acylation or the interfacing biosynthetic pathway. In K2, murein lipoprotein (Lpp) plays a role in peptidoglycan association of KpsD, and loss of this interaction correlates with impaired group 2 capsule production. VexA also depends on Lpp for peptidoglycan association, but CPS production is unaffected in an mutant. In contrast, Wza and group 1 capsule production is unaffected by the absence of Lpp. These results point to complex structure-function relationships between different OPX proteins. Capsules are protective layers of polysaccharides that surround the cell surface of many bacteria, including that of isolates and serovar Typhi. Capsular polysaccharides (CPSs) are often essential for virulence because they facilitate evasion of host immune responses. The attenuation of unencapsulated mutants in animal models and the involvement of protein families with conserved features make the CPS export pathway a novel candidate for therapeutic strategies. However, appropriate "antivirulence" strategies require a fundamental understanding of the underpinning cellular processes. Investigating export proteins that are conserved across different biosynthesis strategies will give important insight into how CPS is transported to the cell surface.
荚膜多糖(CPSs)是许多重要病原体的毒力因子。在 中,CPSs 通过两条不同的途径合成,但这两种途径都需要外膜多糖输出(OPX)家族的蛋白质来完成 CPS 从周质到细胞表面的输出。在这项研究中,我们比较了原型组 1(Wzy 依赖性)和组 2(ABC 转运体依赖性)途径的 OPX 蛋白的特性,分别在 K30(Wza)和 K2(KpsD)中。此外,我们比较了来自 血清型 Typhi(VexA)的 OPX,它与 Wza 具有结构相似性,而在 ABC 转运体依赖性途径中发挥作用。这些蛋白在细胞包膜中的分布和稳定多聚体的形成方式不同,但这些特性与酰化或界面生物合成途径无关。在 K2 中,肽聚糖脂蛋白(Lpp)在 KpsD 与肽聚糖的结合中起作用,这种相互作用的缺失与组 2 荚膜产生受损相关。VexA 也依赖于 Lpp 与肽聚糖结合,但在 突变体中 CPS 产生不受影响。相比之下,Wza 和组 1 荚膜的产生不受 Lpp 缺失的影响。这些结果表明不同 OPX 蛋白之间存在复杂的结构-功能关系。荚膜是许多细菌细胞表面的多糖保护层,包括 分离株和 血清型 Typhi。荚膜多糖(CPSs)通常对毒力至关重要,因为它们有助于逃避宿主免疫反应。在动物模型中,未包裹突变体的衰减和具有保守特征的蛋白家族的参与使 CPS 输出途径成为新的治疗策略候选者。然而,适当的“抗病毒”策略需要对基础细胞过程有基本的了解。研究跨不同生物合成策略保守的出口蛋白将为 CPS 如何运输到细胞表面提供重要的见解。