文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探讨分析软件对任务 fMRI 结果的影响。

Exploring the impact of analysis software on task fMRI results.

机构信息

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Inria, Univ Rennes, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, France.

出版信息

Hum Brain Mapp. 2019 Aug 1;40(11):3362-3384. doi: 10.1002/hbm.24603. Epub 2019 May 2.


DOI:10.1002/hbm.24603
PMID:31050106
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6618324/
Abstract

A wealth of analysis tools are available to fMRI researchers in order to extract patterns of task variation and, ultimately, understand cognitive function. However, this "methodological plurality" comes with a drawback. While conceptually similar, two different analysis pipelines applied on the same dataset may not produce the same scientific results. Differences in methods, implementations across software, and even operating systems or software versions all contribute to this variability. Consequently, attention in the field has recently been directed to reproducibility and data sharing. In this work, our goal is to understand how choice of software package impacts on analysis results. We use publicly shared data from three published task fMRI neuroimaging studies, reanalyzing each study using the three main neuroimaging software packages, AFNI, FSL, and SPM, using parametric and nonparametric inference. We obtain all information on how to process, analyse, and model each dataset from the publications. We make quantitative and qualitative comparisons between our replications to gauge the scale of variability in our results and assess the fundamental differences between each software package. Qualitatively we find similarities between packages, backed up by Neurosynth association analyses that correlate similar words and phrases to all three software package's unthresholded results for each of the studies we reanalyse. However, we also discover marked differences, such as Dice similarity coefficients ranging from 0.000 to 0.684 in comparisons of thresholded statistic maps between software. We discuss the challenges involved in trying to reanalyse the published studies, and highlight our efforts to make this research reproducible.

摘要

有大量的分析工具可供 fMRI 研究人员使用,以便提取任务变化的模式,最终理解认知功能。然而,这种“方法多样性”也有一个缺点。虽然概念上相似,但应用于同一数据集的两个不同分析管道可能不会产生相同的科学结果。方法上的差异、软件之间的实现差异,甚至操作系统或软件版本差异都会导致这种可变性。因此,最近该领域的注意力集中在可重复性和数据共享上。在这项工作中,我们的目标是了解软件包的选择如何影响分析结果。我们使用来自三个已发表的任务 fMRI 神经影像学研究的公开共享数据,使用 AFNI、FSL 和 SPM 这三个主要的神经影像学软件包重新分析每个研究,使用参数和非参数推断。我们从出版物中获取处理、分析和建模每个数据集的所有信息。我们对我们的复制进行定量和定性比较,以衡量我们结果的可变性规模,并评估每个软件包之间的基本差异。从定性上看,我们发现软件包之间存在相似之处,这得到了神经综合关联分析的支持,该分析将相似的单词和短语与我们重新分析的每项研究的所有三个软件包的未阈值结果相关联。然而,我们也发现了明显的差异,例如在软件之间阈值统计地图的比较中,Dice 相似系数从 0.000 到 0.684 不等。我们讨论了尝试重新分析已发表研究所涉及的挑战,并强调了我们为使这项研究具有可重复性而做出的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/65451736e085/HBM-40-3362-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/c040ba515bd1/HBM-40-3362-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/98f0f6ec2884/HBM-40-3362-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/d421f843a4b8/HBM-40-3362-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/d085e78f34b3/HBM-40-3362-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/801b28c5e5a4/HBM-40-3362-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/f999d40e5ade/HBM-40-3362-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/65451736e085/HBM-40-3362-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/c040ba515bd1/HBM-40-3362-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/98f0f6ec2884/HBM-40-3362-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/d421f843a4b8/HBM-40-3362-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/d085e78f34b3/HBM-40-3362-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/801b28c5e5a4/HBM-40-3362-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/f999d40e5ade/HBM-40-3362-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324a/6865780/65451736e085/HBM-40-3362-g007.jpg

相似文献

[1]
Exploring the impact of analysis software on task fMRI results.

Hum Brain Mapp. 2019-5-2

[2]
Isolating the sources of pipeline-variability in group-level task-fMRI results.

Hum Brain Mapp. 2022-2-15

[3]
The RUMBA software: tools for neuroimaging data analysis.

Neuroinformatics. 2004

[4]
Accurate autocorrelation modeling substantially improves fMRI reliability.

Nat Commun. 2019-12-25

[5]
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.

Magn Reson Imaging. 2009-2

[6]
MACS - a new SPM toolbox for model assessment, comparison and selection.

J Neurosci Methods. 2018-5-26

[7]
A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.

Neuroinformatics. 2008

[8]
Effects of using different software packages for BOLD analysis in planning a neurosurgical treatment in patients with brain tumours.

Clin Imaging. 2020-12

[9]
A survey of patient motion in disorders of consciousness and optimization of its retrospective correction.

Magn Reson Imaging. 2015-4

[10]
DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

Neuroinformatics. 2016-7

引用本文的文献

[1]
Statistical inference for same data meta-analysis in neuroimaging multiverse analyzes.

Imaging Neurosci (Camb). 2025-3-31

[2]
Open-source platforms to investigate analytical flexibility in neuroimaging.

Imaging Neurosci (Camb). 2025-7-21

[3]
Comparing the carbon footprint of fMRI data processing and analysis approaches.

Imaging Neurosci (Camb). 2025-6-16

[4]
On the validity of fMRI mega-analyses using data processed with different pipelines.

Imaging Neurosci (Camb). 2025-4-28

[5]
Unlocking near-whole-brain, layer-specific functional connectivity with 3D VAPER fMRI.

Imaging Neurosci (Camb). 2024-4-18

[6]
An attention-based fuzzy CNN-LTSM network for visual object recognition from fMRI images.

J Comput Neurosci. 2025-9

[7]
fNIRS reproducibility varies with data quality, analysis pipelines, and researcher experience.

Commun Biol. 2025-8-4

[8]
Successful reproduction of a large EEG study across software packages.

Neuroimage Rep. 2023-5-27

[9]
NeuroDISK: An AI Approach to Automate Continuous Inquiry-Driven Discoveries in Neuroimaging Genetics.

bioRxiv. 2025-2-19

[10]
Predicting Parkinson's disease trajectory using clinical and functional MRI features: A reproduction and replication study.

PLoS One. 2025-2-21

本文引用的文献

[1]
Facilitating open-science with realistic fMRI simulation: validation and application.

PeerJ. 2020-2-19

[2]
False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows presenting anything as a replicated finding.

Neuroimage. 2019-4-2

[3]
Accurate autocorrelation modeling substantially improves fMRI reliability.

Nat Commun. 2019-12-25

[4]
A tail of two sides: Artificially doubled false positive rates in neuroimaging due to the sidedness choice with t-tests.

Hum Brain Mapp. 2018-9-28

[5]
An Updated Survey on Statistical Thresholding and Sample Size of fMRI Studies.

Front Hum Neurosci. 2018-1-26

[6]
Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.

Neuroimage. 2017-10-24

[7]
Commentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.

Front Hum Neurosci. 2017-6-28

[8]
Scanning the horizon: towards transparent and reproducible neuroimaging research.

Nat Rev Neurosci. 2017-2

[9]
Sharing brain mapping statistical results with the neuroimaging data model.

Sci Data. 2016-12-6

[10]
Exploring fMRI Results Space: 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM.

Front Neuroinform. 2016-7-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索