Suppr超能文献

使用单变量一般线性模型对神经影像数据进行组水平重复测量建模。

Modeling Group-Level Repeated Measurements of Neuroimaging Data Using the Univariate General Linear Model.

作者信息

McFarquhar Martyn

机构信息

Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, United Kingdom.

出版信息

Front Neurosci. 2019 Apr 17;13:352. doi: 10.3389/fnins.2019.00352. eCollection 2019.

Abstract

Group-level repeated measurements are common in neuroimaging, yet their analysis remains complex. Although a variety of specialized tools now exist, it is surprising that to-date there has been no clear discussion of how repeated-measurements can be analyzed appropriately using the standard general linear model approach, as implemented in software such as SPM and FSL. This is particularly surprising given that these implementations necessitate the use of multiple models, even for seemingly conventional analyses, and that without care it is very easy to specify contrasts that do not correctly test the effects of interest. Despite this, interest in fitting these types of models using conventional tools has been growing in the neuroimaging community. As such it has become even more important to elucidate the correct means of doing so. To begin, this paper will discuss the key concept of the (EMS) for defining suitable -ratios for testing hypotheses. Once this is understood, the logic of specifying correct repeated measurements models in the GLM should be clear. The ancillary issue of specifying suitable contrast weights in these designs will also be discussed, providing a complimentary perspective on the EMS. A set of steps will then be given alongside an example of specifying a 3-way repeated-measures ANOVA in SPM. Equivalency of the results compared to other statistical software will be demonstrated. Additional issues, such as the inclusion of continuous covariates and the assumption of sphericity, will also be discussed. The hope is that this paper will provide some clarity on this confusing topic, giving researchers the confidence to correctly specify these forms of models within traditional neuroimaging analysis tools.

摘要

组水平重复测量在神经影像学中很常见,但其分析仍然很复杂。尽管现在有各种专门的工具,但令人惊讶的是,迄今为止,对于如何使用标准的一般线性模型方法(如在SPM和FSL等软件中实现的)来适当地分析重复测量,还没有明确的讨论。鉴于这些实现即使对于看似传统的分析也需要使用多个模型,而且如果不小心,很容易指定不能正确检验感兴趣效应的对比,这一点尤其令人惊讶。尽管如此,神经影像学领域对使用传统工具拟合这类模型的兴趣一直在增长。因此,阐明正确的方法变得更加重要。首先,本文将讨论期望均值平方(EMS)的关键概念,以定义用于检验假设的合适F比率。一旦理解了这一点,在一般线性模型中指定正确的重复测量模型的逻辑就应该清晰了。还将讨论在这些设计中指定合适对比权重的辅助问题,从EMS的角度提供一个补充观点。然后将给出一组步骤,并以在SPM中指定三因素重复测量方差分析为例。将证明与其他统计软件相比结果的等效性。还将讨论其他问题,如纳入连续协变量和球形假设。希望本文能为这个令人困惑的主题提供一些清晰的解释,让研究人员有信心在传统神经影像学分析工具中正确指定这些模型形式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd45/6478886/48939176e617/fnins-13-00352-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验